摘要CRISPR/CAS基于创新的繁殖技术现在为植物育种者提供了前所未有的机会,可以产生遗传变异的繁殖。由于CRISPR/CASPR/CASGENOME编辑的最新进展,能够有效地靶向大多数作物变化的能力表明,农业进步可能会加快。关键字:CRISPR/CAS9,基因组编辑,植物育种,小麦,大米,基因编辑(GE)Technology CRISPR/CAS(定期散布的短篇小说重复/CRISPR相关蛋白),通常被称为“遗传剪刀”,该公司于11年前首次发表,该公司在Emmanielle anderna eylna eylna(Jenn eylna)(遗传剪刀)首次发表( )。如果认真对待道德问题,那么在治疗应用处于最前沿的许多领域中,CRISPR/CAS技术的应用可能是革命性的。div> div> div> div> div> div> div> div> div> div> div> div> DOUDNA和CHARPENTIER于2020年因开发促进“重写生命守则”的技术的重大贡献而获得了诺贝尔化学奖。crispr/cas9目前是植物基因组最常见的编辑系统(Invens等,2022),这是因为它仅需要通用CAS9核酸酶的表达和一个(或更多)单个指南RNA(SGRNA)(SGRNA),该指南(SGRNA)专门设计以使其与某些靶基因序列相匹配,从而使其与某些dna相匹配。我们所生活的时代以全球人口前所未有的增长率为标志。目前估计的世界人口为77亿,到2030年预计到2030年,到2050年将飙升至88亿(Bhatta and Malla,2020年)。这一挑战引发了人们对更高量的食物(约50%)的不愉快需求,这对当前有限的农业生产率施加了巨大负担。气候变化通过升高大气温度,增加干旱并增加土壤盐度来加剧这种情况,所有这些都降低了全球农业生产力并威胁粮食安全(Hazman等,2022)。此外,发现气候变化使植物更容易受到害虫和病原体的影响,这显着对作物产量和质量产生了负面影响(Kim等,2022)。因此,弥合此差距的最有效策略是每个土地面积单位(例如,英亩)提高生产力。
In der Biomedicizinischen Forschung wird die Gezielte Experimentelle Veränderung des Genoms von Versuchstieren durch Mutation definierter endogener DNA-Sequenzen order durch Einbau von Experimentell übertragenem Erbmaterial heute überwiegend mit Hilfe artifizieller sequenzspezifischer Nuklease-Systeme wie例如 CRISPR-Cas9(成簇规则间隔短回文重复序列相关蛋白 9)-System gentechnisch durchgeführt(Anzalone 等人,2020 年,Caso 和 Davies 2022 年,Wang 和 Doudna 2023 年)。 Damit kommen viele früher verwendete gentechnische Methoden zur Erzeugung Genetisch veränderter Tiere nicht oder kaum mehr zur Anwendung。 Jedoch werden diese Mutanten nach wie vor genutzt。生成突变体并与复制技术 (ART) 一起建立辅助。 2017 年 1 月的 Fachinformation 是所有修订版的全部内容,请在线阅读。
遗传编辑工具CRISPR-CAS9的发现使我们能够通过删除或添加DNA的部分来编辑人类基因组。科学家希望通过使用这项技术消除一些致命疾病。简而言之,CRISPR允许我们重写与发现双螺旋的发现相比,我们只能阅读和理解我们的基因组。可以通过该技术来完成躯体和种系编辑;但是,它们涉及不同的道德观点。后者是有争议的,因为它影响了生殖细胞,从而增加了复杂的伦理困境。詹妮弗·杜德纳(Jennifer Doudna)是2020年贵族奖得主,他为发现CRISPR技术做出了贡献。她从没想过这项技术在道德上可能被其他人滥用,例如中国科学家居尔基(He Jianki)的案例,他生产了世界上第一个CRISPR婴儿(Isaacson,2021年)。江民的目标是使婴儿及其死者免于致命的艾滋病毒。他知道,这一宣布将是令人震惊的新闻,这将激发西方和伊斯兰世界的保守派和宗教学者之间的愤怒。
CRISPR-Cas9 系统在其自然状态下被认为是细菌和古菌中存在的一种抵抗噬菌体再感染的免疫形式 (2);而在其人工形式下,它是一种设计简单、使用简单、效率高的基因编辑工具 (10)。 1987 年,通过对大肠杆菌(Escherich, 1885)的核苷酸进行测序,首次发现了后来被称为 CRISPR 区域的重复同源 DNA 序列(11)。 21世纪初,它的一些生物学功能被确定(12),然后,这些区域与一组Cas基因相关。 2005 年和 2007 年,这些回文结构针对病毒再感染的免疫作用得到了实验验证(13),一年后,指导抗病毒防御的 RNA 链(crRNA)的参与被联系起来(14)。 CRISPR-Cas9 的基本成分主要在化脓性链球菌 (Rosenbach 1884) 中被描述,这要归功于 Doudna 和 Charpentier (1) 的工作,他们当时建议通过重新设计 Cas9 复合物将其用作基因组编辑工具。后
Burgio、Arthur Caplan、Carolyn Riley Chapman、George M. Church、Robert Cook- Deegan、Bryan Cwik、Jennifer A. Doudna、John H. Evans、Henry T. Greely、Laura Hercher、J. Benjamin Hurlbut、Richard O. Hynes、Tetsuya Ishii、Samira Kiani、LaTasha Hoskins Lee、Guillaume Levrier、David R. Liu、Jeantine E. Lunshof、Kerry Lynn Macintosh、Debra JH Mathews、Eric M. Meslin、Peter HR Mills、Lluis Montoliu、Kiran Musunuru、Dianne Nicol、Helen O'Neill、Renzong Qiu、Robert Ranisch、Jacob S. Sherkow、Sheetal Soni、Sharon Terry、Eric Topol、Robert Williamson、Feng Zhang 和 Kevin Davies。“对美国国家科学院/皇家学会关于可遗传人类基因组编辑报告的反应。” CRISPR 杂志 3,第 3 期。 5(2020 年 10 月 1 日):332–49。 4.萨哈、克里沙努、J.本杰明·赫尔布特和贾萨诺夫、希拉。 “我们是否应该改变
2020年诺贝尔化学奖授予Drs。Charpentier和Doudna在CRISPR/CAS9的发展中做出了贡献,CRISPR/CAS9是当今使用的主要属性[2]。基于Gen的疗法在本文中称为GETX,提供了治疗的新选择,也许可以治愈许多疾病,包括遗传疾病,传染病和癌症。GUPTA在2014年询问了是否可以使用GETX来治疗CVD的挑衅性问题[3]。theideaisbasedon的考虑,CVD(可能是许多其他疾病)在遗传上是易感性的。因此,修改“善”基因将带来治疗的好处[4]。方法论很简单(图1):(i)确定突变是心脏保护的基因。在大多数情况下,这种突变会导致功能丧失(LOF),并且有许多已知的候选基因,例如PCSK9,胆固醇酯转移蛋白(CETP),Angptl3和ApoC3 [4]; (ii)使用CAS9(或其他基因编辑工具)生成这些有利的突变; (iii)患者终生降低了CVD风险,而无需接受重复治疗。一种过程类似于疫苗接种的过程,其中一种射击对传染病的保护。的确,一些
[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
根据美国食品药品监督管理局 (FDA) 的规定,基因治疗通过转录或翻译转移的遗传物质或特异性改变宿主(人类)基因序列来发挥作用 (FDA 2020)。基因组编辑技术,例如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列 (CRISPR)-Cas 相关核酸酶,包括碱基编辑器,提供了各种工具来高精度地修改基因组 (Li et al. 2020)。这些基因编辑技术极大地加快了基因组编辑基础研究 (Doudna 2020) 和治疗产品的创造速度。尽管这些基因组编辑模式对于高度特异性的基因工程具有巨大的前景,但必须严格审查潜在的脱靶效应,以改进技术并优化其安全性和有效性。意外改变(也称为脱靶或脱靶编辑)的潜在影响是基因组编辑作为一种治疗策略的安全性的关键考虑因素。基因组的意外改变可能是由修改除故意针对的位点以外的 DNA 引起的(美国国家科学院 2017 年)。
蛋白质 - 肽和蛋白质 - 蛋白结合物的合成可能很棘手,这是由于带来化学选择性和现场挑战的蛋白质中的多样化化学功能。2生物正交化学的使用已成功克服了其中的一些挑战,但通常需要冗长的合成才能掺入不自然的氨基酸。同时,使用天然蛋白质功能的使用通常仅限于N-或C-termini,或者导致非选择性标记亲核残基(例如半胱氨酸或赖氨酸)。由于这些原因,人们非常有兴趣扩展允许仔细阐述蛋白质体系结构的方法的工具箱。在他们在ACS Central Science发表的最新作品中,由Francis,Doudna和Fellman领导的团队描述了一种耦合两种生物分子的方法,分别含有酪氨酸和半胱氨酸残留物。酶酪氨酸酶用于将暴露于溶剂的酪氨酸残基氧化为正质酮弹性基团。该组随后与硫醇轴承成分反应,从而导致两种底物之间形成新的共价键(图1)。这建立在团队以前在利用原位形成的奎因酮功能的经验上
抽象的TED谈话是一种新兴和混合类型(Ludewig),已成为非常成功的传播者和科学知识的受欢迎者(Sugimoto等人)。TED的流行吸引力也可能源于承诺在短时间内提供改变生活的见解。此外,TED的谈判可能依靠科幻的“奇迹感”(Sawyer)在其新技术的表现中。CRISPR-CAS9是一种基因组编辑的技术,它吸引了科学家的想象力。Science的2015年度突破,CRISPR成为道德辩论的重点,因为它具有培养人类的潜力。 而不是其治疗用途,而是增强媒体吸引力的潜力。 由于这些原因,科学家呼吁“在人类胚胎中CRISPR技术的任何临床应用中进行全球停顿”(Doudna)。 TED会在全球范围内积极塑造遗传学的论述。 嵌入了美国自我帮助和自我完善的文化中,TED讲座会产生遗传故事,这些故事有利于对基因工程的乐观表现。 本文旨在提出以下问题:TED的形式元素如何影响基因组的代表? 它们如何影响当代身份的结构? 专注于两个播放列表 - 'DNA如何起作用?” 和“进入您的基因” - 本文研究了至少三个正式特征的出现,这些功能为这些故事提供了信息。 最终,TED谈话的目的是预测甚至塑造未来。Science的2015年度突破,CRISPR成为道德辩论的重点,因为它具有培养人类的潜力。而不是其治疗用途,而是增强媒体吸引力的潜力。由于这些原因,科学家呼吁“在人类胚胎中CRISPR技术的任何临床应用中进行全球停顿”(Doudna)。TED会在全球范围内积极塑造遗传学的论述。嵌入了美国自我帮助和自我完善的文化中,TED讲座会产生遗传故事,这些故事有利于对基因工程的乐观表现。本文旨在提出以下问题:TED的形式元素如何影响基因组的代表?它们如何影响当代身份的结构?专注于两个播放列表 - 'DNA如何起作用?”和“进入您的基因” - 本文研究了至少三个正式特征的出现,这些功能为这些故事提供了信息。最终,TED谈话的目的是预测甚至塑造未来。这三个反复出现的元素 - 概念突破,敬畏感和预言性的陈述 - 也使人们有一种奇妙的感觉,并依靠“视觉”的概念来定义人类。本文认为,我们需要密切关注它们如何塑造我们的“遗传未来”。
