随着越来越多的研究将牲畜农业与更快的全球变暖,更高的健康成本和更高的土地要求联系起来,通常建议将基于植物的饮食的急剧转变为有效的全能解决方案。隐含地,这一论点是基于以下假设:当前分配给动物生产系统的资源的重新分配将自动导致对人类食用作物的有效培养,而没有负面的环境,健康或社会经济后果。实际上,这种假设的有效性值得仔细检查,因为农场采用新的农业系统的能力是多方面的,并且有背景。通过对文献的跨学科综述,我们在这里讨论了意外后果的例子,这些后果可能是由于草原转化为可耕种的生产,包括对产量稳定性,生物多样性,土壤生育能力以及其他可能产生的不利影响。我们认为,这些问题中的几乎没有被认为是当前粮食安全辩论的一部分,并呼吁对供应方约束进行仔细检查。
风能利用率的提高以及需求的增长正在影响输电系统的区域负荷。传统上,升级现有线路和建设新线路是增加网络容量和减少拥堵的常用方法。然而,环境、社会和技术挑战正在鼓励网络运营商在未来规划中采取措施提高现有网络的利用率。这里开发了一个混合整数线性规划模型,将各种替代方案(包括动态线路额定值、储能系统和分布式静态串联补偿)集成到网络规划过程中。使用多阶段方法,研究了这些资产的共同优化规划,并将其与传统的重新布线方法进行了比较。IEEE RTS 24 总线系统显示了共同优化的好处,在选定区域风能贡献较大。
出版商声明 这是已接受在《药理学与治疗学》上发表的作品的作者版本。出版过程中产生的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,可能已对本作品进行了更改。最终版本随后发表在《药理学与治疗学》(212 (2020))上 https://doi.org/10.1016/j.pharmthera.2020.107555
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/pbi.13573
1960年代的绿色革命通过遗传改善,化学肥料,灌溉和机械化而实现了作物产量的显着增加。然而,在气候变化和地缘政治动荡的背景下,目前人口增长的轨迹预测,农业生产将不足以确保未来三十年的全球粮食安全。迫切需要对超出增量收益的农作物的改进。植物生物学近年来还通过开发和应用功能强大的技术(包括基因组测序),“ OMICS技术,精确的基因组编辑以及结构生物学和显微镜的步骤变化”,进行了一场革命。proteostasis-控制细胞蛋白质补体的集体过程,包括合成,修饰,定位和降解 - 是一个从这些进步中受益的领域。本期特刊介绍了这个充满活力的领域的最新研究,特别关注蛋白质降解。在当前文章中,我们强调了植物蛋白质症对农艺特征的多样化和广泛的贡献,提出了机遇和策略,以操纵蛋白质静态机制的不同元素以改善作物,并讨论将这些思想付诸实践所涉及的挑战。
爱尔兰的这项政策和机构审查 (PIR) 旨在描述生物多样性支出及其背景。它审查了环境保护领域的直接支出和间接支出。它还研究了政府部门和机构在其核心政策中考虑生物多样性的程度,他们负责的部门是否得到生物多样性和生态系统服务的支持,以及他们的一些政策是否与生物多样性相冲突。PIR 是对 2017 年进行的国家生物多样性支出审查 (NBER) 的补充,并将为目前正在进行的财政需求评估提供信息,以确定实施国家生物多样性行动计划 2021-2025 所需的支出类型,以及如何调动这些资源的问题。
CRISPR-CAS基因组编辑技术正在快速开发,而新的分子工具(例如CRISPR核酸酶)正在定期使用。作为本研究主题的一部分,Bandyopadhyay等。提供了CAS12A的全面概述,CAS12A是一种CRISPR核酸酶,以前称为CPF1。在他们的评论文章中,作者涵盖了Cas12a的结构和机械方面,与Cas9相比,Cas9是最常用的CRISPR核酸酶。他们还强调了Cas12a的用途,目的是改善各种农作物中的农业重要特征。El-Mounadi等人提供了CAS9基因组编辑应用的概述。谁向读者介绍了Cas9活性的机制,其向植物细胞传递的方法(即转化技术),提供了使用CRISPR-CAS9改善作物性状的示例,并触摸了与基因组编辑相关的生物安全和调节方面。A number of countries (e.g., the USA, Brazil, Argentina, and Japan) have already exempted genome edited crops, which do not carry transgenic DNA or novel combination of genetic material (i.e., not similarly achievable through conventional breeding), from being regulated similarly to Genetically Modified Organisms (GMOs) as genetically engineered (GE) organisms ( Schmidt et al., 2020)。尽管上述国家通过了立法,允许在没有GE监管的情况下培养基因组编辑的农作物,但有关该问题的公众对话和政策发展正在发展。对于日本,Tabei等人。在2019年5月至2019年10月期间分析有关基因组编辑的食品及其标签的Twitter对话。分析表明,有54.5%的相关推文是与使用基因组编辑的农作物生产的食物相反的陈述,而只有7%是有利于它的陈述。其余38.5%的推文是被认为是中性的陈述。尽管由于Twitter用户之间的偏见,该分析不一定代表更广泛的日本社会,但该研究强调了关于基因组问题在日本和世界其他地区进行基因组问题的持续公开对话的重要性。
1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)
1 植物科学系,罗瑟姆斯特德研究中心,哈彭登 AL5 2JQ,英国 § 现地址:约翰·英纳斯中心,诺维奇研究园,诺维奇 NR4 7UH,英国 *通讯地址:vladimir.nekrasov@rothamsted.ac.uk 电话:+44 (0)1582 938 292 FH ORCID:0000-0002-0215-3209;VN ORCID:0000-0001-9386-1683 关键词:CRISPR、Cas9、植物、基因组编辑、Golden Gate、MoClo
Rothamsted Research 是一家担保有限公司,注册办事处:如上所述。在英格兰注册编号 2393175。注册慈善机构编号 802038。增值税编号 197 4201 51。由 John Bennet Lawes 于 1843 年创立。