挑战这项研究的目的是分析外泌体在体外将细胞毒性阿霉素(DOX)递送到乳腺癌细胞系的能力。外泌体,分别表达了一两个肿瘤的肽。这些肽显示在外泌体表面。研究包括:>通过蛋白质印迹,电子显微镜和尺寸分布分析对纯化的外泌体的表征>用DOX>功能测定的外泌体负荷优化,以比较不同乳腺癌细胞系和DOX负载oposomes的细胞毒性效应的不同外泌体类型的摄取。
在G1期有效地施用CP和Vincristine可有效杀死胰腺癌细胞(29)。环磷酰胺增加4T1细胞中的p53,p16和γ -H2AX水平,并诱导ROS产生(30)。在MDA-MB-231细胞中,与CH和DOX共同处理从G2/M停滞转变为较高的G1种群。我们的发现与Sabzichi等人的报告保持一致,这表明CH通过抑制NRF2途径来改变MCF-7细胞中的细胞周期分布来提高DOX的功效(23)。我们发现CH抑制MDA-MB-231细胞迁移并增强5-FU,DOX和CP的功效。Yang等。 报道了TNBC细胞中的CH预处理促进Yang等。报道了TNBC细胞中的CH预处理促进
阿霉素 (DOX) 是一种常用于治疗乳腺癌患者的强效化疗药物。然而,它们具有剂量依赖性的心脏毒性,在同时使用人表皮生长因子受体 2 抑制剂曲妥珠单抗或具有高心血管危险因素的患者中,即使是低剂量也会导致心力衰竭 (HF) [1,2]。高血压是 DOX 相关心脏毒性的危险因素 [1,3,4];然而,高血压控制良好的患者的临床结果可能比没有高血压的患者更好 [5]。因此,治疗高血压对于癌症患者尤为重要。在 DOX 治疗之前预防性使用肾素-血管紧张素系统 (RAS) 抑制剂(肾素-血管紧张素转换酶抑制剂和血管紧张素受体阻滞剂)可减少 DOX 诱导的细胞凋亡并提高动物模型的存活率 [6,7]。此外,临床研究表明,RAS 抑制剂可减轻 DOX 相关的心脏功能障碍(以左心室射血分数 (LVEF) 评估)[8, 9]。然而,最近的荟萃分析表明,对于接受含蒽环类药物化疗的癌症患者,使用 RAS 抑制剂并不能显著降低明显 HF 和死亡风险,并且会增加低血压的风险 [10, 11]。此外,指南推荐将 RAS 抑制剂作为一线抗高血压药物 [1],但在某些实体瘤(包括泌尿道、结肠、胰腺和前列腺癌)中已证实其预后良好,但在乳腺癌中并未证实 [12-17]。在我们最近的研究中,对于接受 DOX 治疗的高血压和乳腺癌患者,RAS 抑制剂的心血管结果比β受体阻滞剂或噻嗪类和噻嗪类利尿剂更好,但与钙通道阻滞剂的结果相似 [ 18 ]。在本研究中,我们使用韩国全国队列数据,评估了使用 RAS 抑制剂作为抗高血压药物是否能改善接受含 DOX 化疗的乳腺癌患者的临床结果(与没有高血压的患者相比)。
补充图 2:与相应的对照系相比,K562 T315I-R 和 K562 DOX 55D-R 的普纳替尼 IC50 值显著增加。将细胞与连续浓度的普纳替尼孵育 2 小时,然后裂解以进行 p-CrkL 蛋白质印迹。 (A、B) 与相应的对照系 K562 T315I 和 K562 DOX 55D 相比,在 K562 T315I-R 和 K562 DOX-R 细胞系中观察到普纳替尼 IC50 增加。 (C、D) 与相应的对照系 K562 和 K562 DOX 相比,在 K562-R 和 K562 DOX-R 细胞系中观察到相似的普纳替尼 IC50。误差线表示 SD、n≥3、* p<0.05、** p<0.01 *** p<0.005。
摘要:最近,靶向纳米粒子 (NPs) 因其作为药物输送载体的巨大潜力而在癌症治疗中引起了广泛关注。在本文中,我们介绍了一种新型生物共轭物 (DOX-AuNPs-Tmab),它由附着在化疗药物阿霉素 (DOX) 和单克隆抗体曲妥珠单抗 (Tmab) 上的金纳米粒子 (AuNPs,30 nm) 组成,该生物共轭物表现出与 HER2 受体的特异性结合。通过 TEM (透射电子显微镜) 和 DLS (动态光散射) 方法分析了合成的 AuNPs 的大小和形状及其表面改性。对 SKOV-3 细胞系 (HER2+) 进行了生物学研究,结果表明该生物共轭物对受体具有高度的结合特异性和内化能力,而 MDA-MB-231 细胞 (HER2 −) 则没有。细胞毒性实验表明,用 DOX-AuNPs-Tmab 处理的癌细胞代谢活性降低,球体的表面积减少。生物共轭物主要诱导细胞周期 G2/M 期停滞和晚期凋亡。我们的结果表明 DOX-AuNPs-Tmab 在 HER2 阳性肿瘤的靶向治疗方面具有巨大潜力。
摘要:阿霉素盐酸盐(DOX)目前用于治疗正性和转移性乳腺癌。由于其侧面影响,有时在癌症患者中使用DOX。因此,一些科学家尝试设计可以改善药物治疗效率并降低其侧面影响的药物输送系统。在这项研究中,我们设计,制备和生理化学表征的非离子表面活性剂囊泡(NSV)是通过与胆固醇的亲水性(Tween 20)和疏水性(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)和胆固醇的自生组装不同组合获得的。DOX使用被动和pH梯度远程加载程序在NSV中加载,该程序将药物载荷从〜1增加到约45%。NSV,并选择具有最佳生理化学参数的纳米载体,以进一步进行体外测试。NSV稳定,显示出持续的药物释放至72小时。 MCF-7和MDA MB 468细胞的体外研究表明,含有SPAN 20的NSV在MCF-7和MDA MB 468细胞中的内在化更好。nsvs增加了DOX在MCF-7和MDA MB 468细胞中的抗癌效应,并且这种影响是时间和剂量依赖性。使用转移性和非转移性乳腺癌细胞的体外研究还表明,含有SPAN 20的NSV比具有Tween 20的NSV具有更高的细胞毒性。结果数据表明,加载DOX的NSV可能是潜在治疗转移性乳腺癌的有希望的纳米载体。■简介
用叶酸结合壳聚糖功能化的纳米复合材料 (Fe3O4/GO) 将 DOX 的负载效率提高到 0.98 mg mg-1,同时仍保持 10.5 emu g-1 的高磁饱和度。21 研究还表明,由于氢键的减弱和壳聚糖的降解,复合材料能够有效促进 pH 触发药物的释放。在另一项研究中,Karimi 和 Namazi 成功制造并利用了一种多功能 Fe3O4@PEG 涂层树枝状聚合物,并用 GO 修饰以有效地递送 DOX。7 根据体外结果,据报道该纳米复合材料表现出高细胞摄取百分比,并表现出优异的诱导乳腺癌细胞 (MCF-17) 凋亡的能力,同时保持与正常细胞系 (MCF-10A) 的生物相容性。最近,我们还成功合成并利用羧酸盐功能化的 Fe3O4 纳米粒子来有效负载和释放 DOX,用于对 HeLa(宫颈癌)细胞系进行化疗。8 根据研究,我们证明不同的羧酸盐部分在决定 Fe3O4 纳米粒子的 DOX 负载和 pH 控制释放能力方面起着至关重要的作用。结果表明,用柠檬酸功能化的纳米粒子在诱导 HeLa 细胞死亡方面表现出最高的效率,这是由于 DOX 和 Fe3O4 纳米粒子表面的柠檬酸残基之间的强相互作用。此外,载药 Fe3O4 纳米粒子与可选择性识别癌细胞靶标的特定配体的结合也已被广泛研究作为靶向递送载体。在各种类型的配体中,叶酸 (FA) 受到了广泛关注,因为已知叶酸受体在多种癌细胞(如脑、皮肤、乳腺、肾脏和肺部)中选择性过表达。21此外,还因为其分子量小且结合力高(K d = 1 10 10 M)。22,23 因此,引导磁场的外部靶向策略和 FA 结合相结合有望增强 Fe3O4 基纳米载体将负载药物精确递送至靶细胞的能力。例如,Yang 等人成功地将 FA 结合到负载有聚乙二醇 PEG 和聚(3-己内酯)PCL 的二嵌段共聚物的 Fe3O4 纳米粒子上,以有效递送抗癌药物。 24 根据结果,FA 附着在聚合物胶束上,负责药物载体的特定识别,以达到癌细胞靶标,这由高细胞摄取量表明。此外,据报道,FA 共轭铁修饰的多壁碳纳米管也表现出作为靶向 DOX 纳米载体诱导 HeLa 细胞凋亡的优异能力。25 在这里,据报道,纳米载体具有较高的 DOX 负载能力 (32 mg mg 1 ) 和由外部近红外辐射触发的延长释放能力。然而,目前大多数 FA 结合都涉及使用大而笨重的锚定分子,例如聚合物或碳基材料,或除 DOX 之外的单独部分。因此,这些用于 FA 和药物的多个结合和锚定分子的存在会限制最佳药物负载能力并降低 Fe 3 O 4 纳米粒子的磁化强度。因此,本研究报告了利用双功能天冬氨酸
乳酸链球菌肽是一种用作天然食品防腐剂的肽,本研究采用该肽开发新型纳米载体系统。使用 20 kHz 流通式超声技术成功制备了直径为 100 ± 20 nm 的稳定均匀的乳酸链球菌肽壳纳米乳剂 (NSNE)。NSNE 表现出有限的毒性、高杀菌活性和高载药能力 (EE 65 % w/w)。此外,乳酸链球菌肽壳还用于位点特异性附着重组产生的癌症靶向配体 (α HER2 LPETG IgG)。采用独特的两阶段(生物点击)方法,包括分选酶 A 介导的叠氮化物生物结合 (SMAB) 和应变促进叠氮化物炔烃环加成 (SPAAC) 反应,成功组装靶向 NSNE (NSNE DOX - α HER2 IgG) 并装载化疗药物阿霉素 (DOX)。最后,NSNE DOX - α HER2 IgG 显示出癌症特异性结合,并对表达 HER2 的肿瘤细胞具有增强的细胞毒性。
摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
方法 生成并表征了用 EGFP 标记的强力霉素 (Dox) 诱导的 TP53R273H 和 SV40LT 慢病毒。用这些慢病毒转导从 21 个手术切除的 G1/G2 GEP-NET 原发性或转移性组织中消化的细胞,以产生 Dox 诱导的转基因 PDO (GM PDO)。将用荧光素酶慢病毒转导的 PanNET 的 GM PDO 注入 NSG 小鼠的胰腺中,以产生原位 GM PDO 衍生的异种移植瘤 (GM PDX)。通过 WGS 和 RNA-seq 分析检查了 GM PDO 的遗传和生物学特征,并将其与其原始肿瘤细胞进行比较。通过测量 EGFP 荧光强度来量化在 Dox-on 和 Dox-off 条件下培养的 GM PDO 的细胞生长率。通过生物发光成像监测 GM PDX 的肿瘤生长。通过 IHC 染色测量了 GM PDO 中 Dox 开启和关闭条件下的 NET 标记物 Ki67、p53 (R273H) 和 SV40LT 的表达、其原始肿瘤和 GM PDX。