驾驶时急性健康变化是车辆碰撞的主要原因之一。每年在全球范围内,大约119万人死亡,在汽车碰撞(MVC)中受伤20到5000万人[1]。道路交通损伤给整个个人,家人和国家造成了巨大的经济损失;在大多数国家 /地区,成本约为国内生产总值的3%[1]。因此,世界卫生组织已建议所有政府以整体方式解决道路安全[1]。在日本,政府设定了一个安全交通社会的目标,那里没有发生碰撞,并发布了一次交通安全计划,该计划每五年修改一次。第11次交通安全基本计划始于2021年,直到2025年运行,包括具体的行为目标:2,000或更少和严重伤害22,000或以下的死亡人数。分析MVC的趋势和特征应使有效的可预防措施得以制定[2]。
在当代工程和科学研究中,自动控制与机器学习之间的相互作用变得越来越重要。本报告探讨了这种关系的两个关键方面:机器学习技术以增强自动控制系统的应用以及使用自动控制原理以改善机器学习算法。首先,我们讨论如何利用机器学习来优化复杂系统中的控制策略,从而对动态环境产生适应性和智能的反应。的技术(例如增强学习和神经网络)是否有能力从数据中学习,从而产生更有效的控制机制,这些机制可以处理不确定性和非线性。其次,我们研究了如何将自动控制原理应用于完善机器学习过程。可以利用诸如反馈控制之类的概念来稳定学习算法,减少过度拟合并确保各种机器学习应用中的收敛性。这种双重视角强调了整合这两个领域而产生的相互利益和协同作用。通过案例研究和示例,我们证明了将机器学习和自动控制相结合,为机器人技术,自主系统和智能技术的进步铺平道路的变革潜力。最终,本报告旨在提供有关研究的未来方向以及合并这两个领域的实际含义的见解。
摘要 - 定量反转算法允许在场景中的每个点构建电性能(例如介电常数和电导率)。但是,由于需要了解场景中的事件波场,因此这些技术在测量的反向散射相历史信号和数据集上都具有挑战性。通常,由于天线特征,路径丢失,波形因子等因素,这是未知的。在本文中,我们引入了一个标量校准因子来解释这些因素。为了解决校准因子,我们通过包括正向问题来增强反转过程,我们通过训练简单的馈送正式完全连接的神经网络来解决这些问题,以学习基本介电常数分布与雷达散射场之间的映射。然后,我们最大程度地减少了测得的和模拟字段之间的不匹配,以优化每个发射器的标量校准因子。我们证明了数据驱动的校准方法在菲涅尔研究所数据集中的有效性,其中我们显示了估计的场景介绍的准确性。因此,我们的论文为在现实成像场景中应用定量反转算法的应用奠定了基础。
通过两相局部 /非局部应力驱动模型 / scorza的纳米梁的断裂行为,d。; Luciano,R。; Vantadori,S ..-在:复合结构。- ISSN 0263-8223。-280:(2022),p。 114957.114957。[10.1016/j.compsctuct.2021.114957]
摘要:极端的气象事件和人为影响的影响决定了微生物群落组成的重要变化。要知道这些变化的程度,有必要深入研究地球因子,以被视为基线。这项研究的目的是评估地形特征和土壤地球化学对三个被认为是地中海环境的地形分子生物标志物的静脉细菌属的空间分布的影响。鉴于静脉细菌在生态系统中发挥的重要作用,我们进行了rubrobacter,gaiella和Microlunatus属的空间分布模型,并在基于机器学习(ML)框架的框架中研究了真菌/细菌的比例。可变重要性提供了对地貌空间分布的控制因素的洞察力。预测的肌细菌属的空间分布通常遵循地形约束,主要是高度。rubrobacter与斜率方面和锂有关。 Microlunatus与地形湿度指数(TWI)和归一化差异指数(NDWI)以及真菌/细菌比例有关。 Gaiella与流道和金属有关。我们的结果提供了有关地中海地区肌细菌适应的新信息,并显示了使用ML框架进行OTUS分布的空间预测的潜力。
1,2`,Qiifan Yang 3`,HernánVargas1,Kevin Low Neda Jahanshad 3,4,5 *`这些作者同样作为手稿的第一作者贡献了同样的作者 *这些作者同样贡献了该手稿1。。西班牙马德里政治家大学。3。。4。。5。Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Marina del Rey, California, USA Corresponding authors: Yolanda Gil, PhD Research Professor of Computer Science Director of USC Center on AI Research for Health Director of AI and Data Science Initiatives Information Sciences Institute Viterbi School of Engineering University of Southern California 4676 Admiralty Way Suite 1001 Marina del Rey, CA 90292 gil@isi.edu Neda Jahanshad,博士神经病学和生物医学工程信息科学副教授,LOBES:ENIGMA CONSION CONSION CONSICAN副总监,Enigma Consortial,Enigma Consortium consortial,Imagtium Imagemitium Image centimics Image centration of Sutiage and Super of Susinia of Suinia of Suinia of Suinia of Suinia of Suinia of Suinia of suinia CA 90292 NEDA.JAHANSHAD@USC.EDU作者信息Daniel Garijo:orcid:0000-0003-0454-7145(daniel.garijo@upm.es)
HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。 尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。 这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。 我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。 PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。 PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。
来源:ISO新英格兰净能量和峰值负载; 2024年的数据是初步的,并且要经过重新安置; 2040年的数据基于ISO新英格兰2021年经济研究的方案3:未来网格可靠性研究阶段1。可再生能源包括垃圾填埋气,生物量,其他生物量气体,风,网格尺度太阳能,落后太阳能,市政固体废物和其他燃料。
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。