我的名字叫吉姆·康纳顿(Jim Connaughton)。我是JLC Strategies的首席执行官,技术和政策咨询公司,与技术初创公司,创新项目开发人员,私人和上市公司以及少数几个政策智囊团,大学和政府组织合作。在这次讨论中,我还担任了八年的环境质量顾问主席,并自豪地在国会一致通过了原始的小型企业责任救济和布朗领域的振兴法案中,以与成千上万的角色一起发挥了很小的作用(“ 2002年的布朗领域振兴法案)(“布朗文件法案”)。我还是AI数据中心基础设施启动Nautilus Data Technologies的董事长兼首席执行官; C3.AI的执行副总裁,最早的AI软件技术公司之一;以及Constellation Energy执行副总裁,这是美国最具创新性的开发商和发电的运营商,以及能源技术和服务的提供商。我在布朗领域及其周围度过了职业生涯的大部分时间。
Generali Group首席执行官Philippe Donnet说:“ Generali在2024年取得了出色的成绩,对我们的财务目标进行了过度实现,并成功地将我们的“终身合作伙伴24:推动增长”战略计划带入了一个结束。这些结果进一步反映了我们通过我们采取的管理行动确保每个细分市场一致的有机增长的能力,同时成功整合了我们所收购的所有业务。今天的小组在其历史上处于最强的位置,这是我们记录的运行和调整后的净结果证明的,这得益于我们的人员和分销网络的努力和承诺。我们继续将我们的团队转变和多样化,成为全球领先的综合保险公司和资产经理,现在专注于加速我们对卓越的追求。我们雄心勃勃的新“终生合作伙伴27:卓越的计划”计划将推动强劲的收入增长,可靠的现金创造和增加的股东报酬。我们的AI和数据功能进一步提高了我们从快速变化的客户需求和新兴趋势中始终如一地捕捉机会的能力。”
摘要 - 自动驾驶的基本任务之一是安全的轨迹计划,决定车辆需要驾驶的任务,同时避免障碍,遵守安全规则并尊重道路的基本限制。这种方法的实际应用涉及考虑周围环境条件和运动,例如车道变化,避免碰撞和车道合并。本文的主要重点是使用高阶多项式来开发和实施安全碰撞的高速公路车道变化轨迹,以高度自动化驾驶功能(HADF)。规划通常被认为是比对照更高的级别过程。行为计划模块(BPM)的设计旨在计划高级驾驶动作(例如Lane Change Maneuver),以安全地实现横向指导的功能,以确保车辆安全性和通过环境有效的运动计划。基于从(BPM)收到的建议,该函数将产生一个相应的轨迹。所提出的计划系统是特有的,具有基于多项式的算法的情况,对于两个车道高速公路方案。多项式曲线具有连续曲率和简单性的优点,可降低整体复杂性,从而可以快速计算。通过MATLAB模拟环境对所提出的设计进行了验证和分析。结果表明,本文提出的方法在车道变化动作的安全性和稳定性方面取得了显着提高。索引项 - BPM,HADF,MPC,车道变更,轨迹产生。
摘要 - 自主驾驶有可能为更有效的未来移动性奠定基础,要求研究领域通过安全,可靠和透明的驾驶来建立信任。大语言模型(LLM)具有推理能力和自然语言的理解,具有作为可以与人类互动和为人类驾驶员设计的环境互动的自我运动计划的普遍决策者的潜力。尽管这条研究途径很有希望,但当前的自动驾驶方法通过结合3D空间接地以及LLMS的发展和语言能力来挑战。我们介绍了BEV-驱动程序,这是一种基于LLM的模型,用于Carla中的端到端闭环驾驶,它利用潜在的BEV功能作为感知输入。bevdriver包括一个BEV编码器,以有效地处理多视图图像和3D LiDAR点云。在一个共同的潜在空间中,BEV特征通过Q-前者传播,以与自然语言指示保持一致,并传递给LLM,该LLM预测和计划在考虑导航说明和关键场景的同时,可以精确的未来轨迹。在Langauto基准测试中,与SOTA方法相比,我们的模型在驾驶得分上的性能高达18.9%。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
摘要 - 基于端到端视力的模仿学习已直接从专家演示中学习控制命令来证明自主驾驶的有希望的结果。然而,传统方法依赖于基于回归的模型,这些模型提供了精确的控制,但缺乏一致性估计或基于分类的模型,这些模型提供了置信度得分,但由于分离而降低了精度。此限制使量化预测行动的可靠性并在必要时应用更正是一项挑战。在这项工作中,我们引入了双头神经网络体系结构,该架构既集成回归和分类负责人,以提高模仿学习中的决策可靠性。回归负责人预测了连续的驾驶动作,而分类头则估计了置信度,从而实现了一种调整机制,该校正机制可以调整低信心情景中的动作,从而增强了驾驶稳定性。我们在Carla模拟器内的闭环环境中评估了我们的方法,证明了其检测不确定的动作,估计信心并应用实时校正的能力。实验结果表明,我们的方法可降低车道偏差,并提高了传统精度高达50%,表现优于常规回归模型。这些发现突出了分类指导置信度估计的潜力,以增强基于视觉的模仿学习对自主驾驶的鲁棒性。源代码可在https:// github上找到。com/elahedlv/profester_aware_il。
语义细分是执行场景理解的有效方法。最近,3D鸟视图(BEV)空间中的细分已被驱动策略直接使用。但是,在商用车中使用的环绕式鱼眼摄像机的BEV细分工作有限。由于此任务没有现实世界的公共数据集,并且现有的合成数据集由于遮挡而无法处理Amodal区域,因此我们使用Cognata Simulator创建一个合成数据集,其中包括各种道路类型,天气和照明条件。我们将BEV细分概括为使用任何凸轮模型;这对于混合不同的相机很有用。我们通过在Fisheye图像上应用圆柱整流并使用基于标准LSS的BEV分割模型来实现基线。我们证明,我们可以在没有不明显的情况下实现更好的性能,这具有增加的运行时效应,这是由于预处理,视野和重新采样的伪像而导致的。此外,我们引入了一种可学习的bev池层策略,对鱼眼摄像机更有效。我们以遮挡推理模块来探讨该模型,这对于估计BEV空间至关重要。fisheyebevseg的定性 - 在视频中展示了https://youtu.be/hftpwmabgs0。
自主驾驶代表了创新的前沿,具有深刻地重塑运输和流动性的潜力。具有彻底改变运输系统,增强安全性和重新构想城市景观的能力,其重要性不能被夸大。同时,随着全球人口增长和城市化的加速,对高效,可持续和聪明的流动解决方案的需求变得越来越紧迫。自主驾驶为这些挑战提供了令人信服的解决方案,利用了诸如人工智能,传感器融合和连接性等尖端技术,使车辆能够自主行驶,智能地进行沟通并与环境无缝互动。在自动驾驶上的物联网上的ACM交易的本期特刊是一个信标,阐明了该领域的跨学科本质和意义,同时对其广泛的含义提供了深入的见解。涵盖了从计算平台和模拟器的体系结构到感知算法和基础设施集成的多学科主题,该问题采用了面向应用程序的方法,可满足各种各样的研究人员,工程师,策略制造商和行业专业人员。
上下文:自主驾驶系统(AD)的出现标志着朝着智能运输的重大转变,对公共安全和交通效率产生了影响。尽管这些系统集成了各种技术并提供了许多好处,但它们的安全至关重要,因为脆弱性可能会对安全和信任产生严重的后果。目的:本研究旨在使用静态代码分析工具CodeQL系统地研究突出的开源ADS项目代码库中的潜在安全弱点。目标是确定共同的漏洞,它们在版本上的分布和持久性,以增强广告的安全性。方法:我们根据其高github恒星计数和4级自动驾驶功能选择了三个代表性的开源广告项目,即Autoware,Airsim和Apollo。使用CodeQl,我们分析了这些项目的多个版本以识别漏洞,重点是CWE类别,例如CWE-190(Integer Overflow或Wraparound)和CWE-20(输入验证不正确)。我们还通过软件版本跟踪了这些漏洞的生命周期。这种方法使我们能够系统地分析项目中的漏洞,这在以前的广告研究中尚未进行广泛探讨。结果:我们的分析表明,在选定的ADS项目中,特定的CWE类别,尤其是CWE-190(59.6%)和CWE-20(16.1%)。这些漏洞通常持续六个月以上,涵盖了多个版本的迭代。结论:广告中的这些安全问题仍有待解决。经验评估显示了这些漏洞的严重性与它们对ADS性能的切实影响之间的直接联系。我们的发现突出了将静态代码分析集成到ADS开发中以检测和减轻共同漏洞的必要性。同时,主动保护策略(例如定期更新第三方库)对于提高ADS安全至关重要。和监管机构在促进静态代码分析工具和设定行业安全标准方面可以发挥关键作用。