作者按字母顺序排列,以反映他们对本文的同等贡献。他们谨感谢意大利外交和国际合作部公共和文化外交司政策规划部门的资金支持。本文表达的观点不代表北约、北约防御学院、意大利外交和国际合作部或作者所属或曾经所属的任何其他组织的观点。作者感谢 Chris Bassler、Heiko Borchert、Gianmarco Di Loreto、Michael Horowitz、Jesse Humpal、Alexander Lanoszka、Jon Lindsay、Niklas Masuhr、Lennart Maschmeyer、Nina Silove、Max Smeets 以及匿名评论者的大量反馈和建议。在线附录中包含其他书目和解释材料,网址为 https://doi.org/10.7910/DVN/BCC6IV。
作者按字母顺序列出,以反映他们对本文的同等贡献。他们想感谢意大利外交和国际合作部公共和文化外交司政策规划部门的财政支持。本文表达的观点不代表北约、北约防御学院、意大利外交和国际合作部或作者所属或曾经隶属的任何其他组织的观点。作者感谢 Chris Bassler、Heiko Borchert、Gianmarco Di Loreto、Michael Horowitz、Jesse Humpal、Alexander Lanoszka、Jon Lindsay、Niklas Masuhr、Lennart Maschmeyer、Nina Silove、Max Smeets 以及匿名审阅者的广泛反馈和建议。其他书目和解释材料位于在线附录中,网址为 https://doi.org/10.7910/DVN/BCC6IV。
摘要:在过去的几十年中,无人驾驶汽车(无人机),也称为无人机,在无线传感器网络(WSN)的研究领域中引起了更多的关注和探索。此外,与军事支持,农业行业和智能互联网(IoT)有关的无人机援助运营的应用。目前,使用基于无人机的物联网(也称为iOD),并且全球研究人员正在探究他们的设计挑战和技术。无人机的放置(节点)是在IOD环境中的重要考虑因素,并且与物联网的特性密切相关。给定一个基站(BS),传感器节点(SNS)和IoT设备旨在捕获BS传输的信号,并以某种方式利用Internet连接来促进用户。可以通过将无人机集成到物联网中来实现相互利益。基于无人机的集群模型并非没有挑战。路由协议必须通过关键算法证实。无人机被设计为应用程序,但基本原理是相同的。优化算法是提高准确性,性能和可靠性的门户。本文讨论了其中一些优化算法,包括遗传算法(GA),BEE优化算法和鸡肉群优化聚类算法(CSOCA)。最后,讨论了IOD背景下的路由计划,协议和挑战。
近几十年来,安全环境发生了巨大变化。最重要的是,这影响了敌对战争的作战方式,特别是所使用的军事方法。军事革命是战争和冲突史中不可分割的特征。变革的最重要驱动力之一是技术进步,如今技术正以前所未有的速度推动军事领域的这一转变。无人机战争能力就是一个典型的例子,它将传感器技术与精确打击效应器和通信相结合。人工智能 (AI)、机器人、网络、云技术、纳米技术和激光系统都是为此目的而采用和整合的技术进步。这些进步与小型化、相对低成本的制造和隐身技术相得益彰。尤其是军用无人机的发展,改变了民用和军用任务。虽然无人机在农业、监控、电影摄影和其他领域有各种民用应用,但本文将讨论军用无人机、无人驾驶飞行器 (UAV) 和不同大小的遥控飞机,这些飞机用于执行对人类来说太枯燥、肮脏或危险的活动。机上无人是军用无人机的主要卖点,因为这样做有很多好处:首先,它需要更少的飞行员冒着生命危险飞行
D005-DGA MQ-9 Reaper / Block 1 MQ-9 Reaper / Block 5Fr ECA Robotics D006-DGA Système DROGEN
摘要:无人机因其大小和工作量各不相同而广泛用于各种应用,例如监视、导航、在自主农业系统中喷洒农药、各种军事服务等。然而,携带有害物体的恶意无人机经常被用来侵入禁区并袭击关键公共场所。因此,及时发现恶意无人机可以防止潜在的危害。本文提出了一种基于视觉变换器 (ViT) 的框架来区分无人机和恶意无人机。在提出的基于 ViT 的模型中,无人机图像被分割成固定大小的块;然后,应用线性嵌入和位置嵌入,最终将得到的向量序列输入到标准 ViT 编码器。在分类过程中,使用与序列相关的额外可学习分类标记。将提出的框架与几个手工制作的深度卷积神经网络 (D-CNN) 进行了比较,结果表明,提出的模型的准确率达到了 98.3%,优于各种手工制作的和 D-CNN 模型。此外,通过将所提出的模型与现有的最先进的无人机检测方法进行比较,证明了所提出的模型的优越性。
图像信用:https://www.defensenews.com/land/2021/2021/10/20/general-dynamics-epirus-team-team-team-team-team-counter-counter-counter-drone-swarm-system-system-system-combat-combat-combat-vehicles/
多项研究和调查得出的结论是,拥有全面的监管和标准化框架可能会极大地促进无人机相关业务的发展。在此背景下,欧盟的“地平线 2020”研究与创新计划资助了 AW-Drones 项目,通过提出欧盟无人机监管指导意见来支持规则制定过程。这项欧盟法规以绩效为基础,包括具有法律约束力的“硬性规定”(即具有法律约束力的委员会法规),其中包含高水平的绩效要求。这些“硬性规定”由所谓的“软性规定”补充,其中规定了欧洲航空安全局 (EASA) 批准的可接受合规手段 (AMC)。这些 AMC 可能指标准开发组织 (SDO) 制定的标准。
多项研究和调查得出的结论是,拥有全面的监管和标准化框架可能会极大地促进无人机相关业务的发展。欧盟法规以绩效为基础,包括具有法律约束力的“硬性规定”(即具有法律约束力的委员会法规),其中包含高水平的绩效要求。这些“硬性规定”由所谓的“软性规定”补充,即欧洲航空安全局 (EASA) 批准的可接受合规手段 (AMC)。这些 AMC 可能指标准开发组织 (SDO) 制定的标准。在此背景下,欧盟“地平线 2020”研究与创新计划资助了 AW-Drones 项目,以支持欧盟的无人机法规,方法是确定 EASA 可能接受为 AMC 的标准,从 UAS 性能法规的角度,使欧盟的无人机能够安全、环保和可靠地运行,并确定现有标准中的差距。SORA 本文件介绍了至少部分涵盖特定操作风险评估方法 (SORA) 设定的标准的标准,这些标准由 EASA 推荐为欧盟法规 947/2019 第 11 条的 AMC,并且由于其得分,这些标准已经可以推荐在 AMC 中实际使用,阻碍完全覆盖的差距,填补已发现差距的建议以及有关要解决的监管方面的建议。
无人驾驶飞机(UAV),通常称为无人机,是指无需人类操作员即可自主飞行或远程控制的飞行器及其相关设备 [1]。无人机越来越多地用于商业和民用领域,例如监视、建筑监控、农业等。它们可以执行载人飞机难以执行的空中作业/任务。此外,它们的使用带来了显著的经济节约和环境效益,同时降低了对人类生命的威胁。最近,无人机已经进入休闲市场,销量达到数百万台。因此,技术、法规和社会接受度的进步有利于加速无人机在专业应用中的部署。根据 Teal Group [2] 的一项研究,全球民用无人机产量预计将在未来十年达到 735 亿美元,从 2017 年的全球 28 亿美元增至 2026 年的 118 亿美元(即以不变美元计算的年增长率为 15.5%)。