摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
商业申请服务出现。。。。。。。。。。。。。。。。。9新的农药产品商业化..。。。。。。。。。。。。。。。。。10寂静的春季在农药上十字准线。。。。。。。。。。。10喷涂系统开发了液滴尺寸分析仪。。。。。10大学专注于农药教育。。。。。。。。。。。。。。。。11减少耕作更广泛地接受。。。。。。。。。。。。。。。。。。。11自动速率控制器驱动更改。。。。。。。。。。。。。。12种转基因作物变成了游戏规则。。。13大豆锈迁移重点,以彻底喷雾覆盖范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 EPA需要标签上的喷雾液滴信息。。。。。16寻找未来。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16喷嘴的许多功能。。。。。。。。。。。。。。。。。。。。。。。。。。18
但是,没有逻辑元素,此类系统的编码功能不足以编程任意算法。尽管在十年前的液滴的压力调节流中显示了单个逻辑操作,但事实证明,15,16,24的进一步整合被证明是困难的,抑制了具有非平凡功能的系统的创建。先进的内置控制仍然是微流体学的最重要,最开放的问题之一,从而阻碍了与实验室芯片概念一致的自主和便携式设备的开发。在这里,我们解决了这个问题,并提出了一个液滴逻辑平台,以构建具有多个内部状态的顺序逻辑单元。我们使用的水滴不弄湿通道壁,被油包围为潮湿通道壁的连续相(CP)。大于通道横截面大的液滴在壁之间挤压。这个特殊的环境将液滴的高度限制在毛细血管上主导重力的尺寸,从而使后者可忽略不计。因此,毛细血管最小化表面积,形成带有圆形末端的细长塞子液滴。25界面曲率引入了毛细管压力差P L,该毛细血管差p l跨界面维持,并由年轻 - 拉普拉斯方程描述,该液滴由宽度W和高度H的矩形通道限制为液滴,并且表面张力γ可以估计为P L =γ(2 H - 1-1-2 W - 1-2 W - 1)。在这里,我们假设液滴的末端的形状分别由Radii w /2和H /2的相对壁之间的圆圈开处方。26P L对管道的局部尺寸的依赖性意味着将液滴转移到更狭窄的区域会增加液滴内部的压力。因此,通道管腔的更改可用于为液滴建立毛细管井。
镀仑及其合金在近年来引起了人们的关注。[1,2]尽管凝胶的熔点为29.8°C,但它可以与其他金属合金(例如impium(in)和TIN(SN)(SN)合成,以进一步降低其熔点。在过去的十年中,特定的焦点一直放在共晶的gal- lium im依(Egain; 75 wt%ga,25 wt%in;熔点:14.2°C)和galinstan(68.5 wt%ga,21 wt%,21 wt%,21 wt%in,10 wt%sn; 10 wt%sn;熔点:13.2°C)。[3]这些基于甘露的液体金属合金具有包括高电导率在内的金属的证明(约3.4×10 6 s m-1,比铜低约17倍),低粘度(大约是水的粘度的两倍),高表面张力(大约600-700-700-700 mn-m-nm-n m-nm-n m-nm-n m-n m-n m-n m-n m-n m-n m-n m-n m-n m-n ligible vapor and pa pa and pa pa and paepers),<<10 - <处理无需在烟雾罩中工作。[4] Gal-Instan和Egain在微电力机械系统和微富集学中引起了人们的关注,其应用,包括可拉伸的电子设备,[5,6]可重新配置的天线,[7,8]软机器人和可穿戴设备,[9-11]微流体的固定器,[9-11]微流体 - 液化剂,[12,14-14] [12,1,3] [12,-1--13]。液滴发生器。[15,16]由于固有的挑战,诸如将液体金属注入微通道内部,因此由于它们的高表面十足,液滴发生器允许可重复生成可配置尺寸的液滴的生成仍然具有挑战性。这样的液滴发生器将为执行器等应用的纳米和微螺旋铺平道路,[17,18]泵,[19,20]触觉设备,[21]
如果下一个液滴仅包含一个适合用户定义的参数(大小,荧光标记)的单个单元格,则将其分配到目标实验室中。否则,将其分配到恢复瓶中,允许重新处理
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
