2 霍华德休斯医学研究所,波士顿,MA 02115 通信:ram@genetics.med.harvard.edu (RV);perrimon@genetics.med.harvard.edu (NP) 摘要 CRISPR 筛选可实现系统的、可扩展的基因型到表型映射。我们之前开发了一种用于果蝇和蚊子细胞系的汇集 CRISPR 筛选方法,使用质粒转染和位点特异性整合来引入单向导 (sgRNA) 文库,然后进行 PCR 和整合的 sgRNA 测序。虽然有效,但该方法依赖于早期组成型 Cas9 活性,这可能会导致基因组编辑和 PCR 检测到的 sgRNA 之间存在差异,从而降低筛选准确性。为了解决这个问题,我们引入了一种新方法来共转染表达抗 CRISPR 蛋白 AcrIIa4 的质粒以抑制早期 sgRNA 表达期间的 Cas9 活性,我们称之为“IntAC”(与抗 CRISPR 整合酶)。 IntAC 使我们能够构建一种由高强度 dU6:3 启动子驱动的新型 CRISPR 筛选方法。这个新库显著提高了整个基因组中适应性基因的精确度,在 5% 的误差范围内检索了 90-95% 的必需基因组,使我们能够生成迄今为止为果蝇组装的最全面的细胞适应性基因列表。我们的分析确定,IntAC 方法允许的升高的 sgRNA 水平推动了大部分改进。果蝇适应性基因与人类适应性基因表现出很强的相关性,并强调了旁系同源物对基因必需性的影响。我们进一步证明,IntAC 与靶向 sgRNA 子库相结合,能够在溶质超载下精确地正向选择转运蛋白。IntAC 是对现有果蝇 CRISPR 筛选方法的直接增强,显著提高了准确性,并且可能广泛应用于其他细胞类型(包括蚊子、鳞翅目、蜱虫和哺乳动物细胞)中的无病毒 CRISPR 筛选。
转座元件(TES)是重复的DNA序列,可能能够在整个基因组中移动。除了它们固有的诱变效果外,TE还可以通过捐赠其内在的调节序列(例如促进细胞基因的异位表达)来破坏附近基因。te转录不仅对于TE换位本身是必需的,而且还可以与Te-Gene Fusion转录本相关,在某些情况下也是普遍转录的产物。因此,正确确定了TE副本的转录状态,是为了理解TE在宿主基因组中的影响。识别和量化TE转录的方法主要依赖于简短的RNA-seq读取以在家庭级别估算TE表达,同时使用特定算法来区分副本特定的转录。但是,将简短的读数分配给其正确的基因组位置,基因组特征并不是微不足道的。在这里,我们检索了果蝇的全长cDNA(远程prime,词汇),并使用牛津纳米孔技术进行了对其进行验证。我们表明,可以使用长阅读RNA-Seq来识别和量化复制级别的转录TE。尤其是,使用长读数比简短读数更好地估计了插入过度插入的注释基因。尽管如此,长TE转录本(> 4.5 KB)并未得到很好的捕获。大多数表达的TE插入对应于失去其转置能力的副本,在家庭中,只有几份副本表示。长阅读测序还允许识别约107个TE副本的剪接转录本。总的来说,睾丸和卵巢之间TE的第一个比较在子类和插入水平上发现其转录景观中的差异。
果蝇肌生成抑制剂他的基因是成人肌肉功能和肌肉干细胞维护的essen0al,Robert Mitchell-Gee*1,Robert Hoff*2,Robert Hoff*2,Kumar Vishal2,3,Daniel Hancock1,Daniel Hancock1,Sam McKitrick4,Sam McKitrick4,Cristina newnes newnes newnes-quipperjeta1,tyna and crippation and tyanna l.lovator richana l.lovator,richanna l.lova。 taylor1+ 1。生物科学学院,加的夫大学,加的夫,CF10 3AX,英国。2。圣地亚哥州立大学生物学系,圣地亚哥,加利福尼亚州92182,美国3。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。 新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。在果蝇中,直到最近才描述了具有相似特征的成年MUSC。这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。然后我们探索了他的功能。他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。2015; Laurichesse and Soler 2020)。在飞行肌肉本身中,他的突变体的MUSC数量依赖于年龄,这表明他是维持成年肌肉干细胞种群所必需的。此外,MUSC的这种下降与功能效应相吻合:飞行能力的年龄下降。总的来说,他是果蝇成人MUSC的新颖标志,并且在老化过程中需要保持MUSC数量和飞行能力。介绍。在水果中,果蝇果蝇已证明了研究人员探索肌肉发育的遗传和细胞基础的宝贵模型(Dobi等人在发育过程中,果蝇经历了两波骨骼肌肌发生。胚胎发生过程中的第一个引起了使用ungl pupagon的幼虫肌肉。第二波在普帕奇(Pupagon)期间形成了在成年型中发现的各种肌肉,这些肌肉持续了两个到三个月。不同的成年肌肉是由成年肌肉祖细胞(AMP)引起的,这是一种干细胞populagon,在胚胎发生过程中被放在一边,然后在幼虫寿命中增殖。成年肌肉包括由机翼圆盘AMP形成的胸间间接肌(IFMS)和跳跃肌肉(也称为TDT,TDT,TREGAL的to骨抑制剂),这些肌肉是由与T2间胸乳清盘(Jaramillo et e e2009)。
睡眠和昼夜节律功能障碍是阿尔茨海默氏病(AD)的常见临床特征。越来越多的证据表明,除了症状外,睡眠障碍还可以推动神经退行性的进展。蛋白质聚集是AD的病理标志;然而,睡眠如何影响蛋白质的分子途径仍然难以捉摸。在这里,我们证明了睡眠调制影响蛋白质的蛋白质和神经退行性的果蝇模型中的神经退行性的进展。我们表明睡眠剥夺增强了TAU聚集毒性,导致突触变性加剧。相比之下,通过调节的自噬液和泛素化的tau的清除率增强了神经元的毒性tau降低,导致神经元的毒性tau缩减减少,这表明质量的蛋白质处理和清除率导致了证明的突触完整性和功能。这些发现突出了睡眠与蛋白质稳态调节之间的复杂关系与增强睡眠治疗剂的神经保护潜力,以减慢或延迟神经变性的发展。
1 Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany, 2 Department of Biology, Chemistry, and Pharmacy, Freie Universita¨t Berlin, Berlin, Germany, 3 Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wu¨rzburg, Germany, 4 Core facility for metabolomics and small molecules mass spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany, 5 Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany, 6 CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France, 7 Aix Marseille Universite课,Inserm,SSA,MCT,Marseille,法国,8显微镜核心设施,Max Planck感染生物学研究所,柏林,德国,9医学院,武兹堡大学,德国武兹堡,德国,德国,德国
致谢:本研究由 HHMI (SLZ) NIH BRAIN 计划奖 (1RF1MH117823-01) (SLZ 和 DEK) 和 R01MH114017 (DEK) 资助。我们要感谢 Mark Dombrovskiy、Alex Kim、Juyoun Yoo、Saumya Jain 和 Zipursky 实验室的其他成员就实验和抗体选择进行的有益讨论。
血脑屏障(BBB)代表循环系统与大脑之间的关键接口。在果蝇中,BBB由会阴和植物胶质神经胶质细胞组成。周围的神经胶质细胞是形成神经系统最外层并参与营养摄取的小丝分裂活性细胞。粘膜下神经胶质细胞会堵塞分隔连接,以防止大分子细胞细胞扩散到神经系统中。为了解决植物下神经胶质是否仅形成一个简单的屏障,还是与会阴神经胶质细胞和内心神经系统(CNS)细胞建立特定接触,我们进行了详细的形态分析。使用遗传编码的标记以及高分辨率激光扫描共聚焦显微镜和透射电子显微镜,我们确定了延伸到周围层层的细胞过程,并进入了CNS皮层。有趣的是,观察到长细胞过程到达中央大脑神经胶质的神经胶质。GFP重建实验强调了下灌木丛和振兴神经胶质之间的多个膜接触区域。此外,我们确定G蛋白偶联受体(GPCR)的喜怒无常为阴性细胞过程生长的负调节剂。失去喜怒无常的损失引发了大规模的植物下细胞过程中CNS皮层的过度生长,此外,还影响了异生物生物转运蛋白MDR65的两极化定位。最后,我们发现GPCR信号传导(而不是分隔连接形成)负责控制膜过度生长。我们的发现支持果蝇BBB能够通过长细胞过程弥合大脑循环和突触区域之间的通信差距的观念。
这篇早期版本的文章已被同行评审和接受,但尚未通过组成和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
摘要:目前,靶向烟碱乙酰胆碱受体(NACHR)的杀虫剂已被广泛使用。对杀虫剂的杀伤力作用的研究发现,它们可以影响昆虫的病毒量。杀虫剂影响昆虫病毒负荷的机制尚不清楚。在这里,我们表明靶向杀虫剂的NACHR可以通过免疫缺陷(IMD)途径影响病毒复制。我们证明,低剂量的尖型(6.8 ng/ml),充当果蝇的拮抗剂,是果蝇的拮抗剂烟碱乙酰胆碱受体α6(Dα6),显着升高了成年成年成年型成年型成人乳糖质滴虫的drosophilophila sigmavirus(dmelophila melanogaster)。相反,高剂量的Spinosad(50 ng/ml)充当Dα6的激动剂,大大降低了病毒载量。在Dα6 -Knockout Flies中不存在这种病毒水平的双向调节,这表示Spinosad作用通过Dα6的特异性。此外,Dα6的敲低导致IMD途径中基因表达降低,包括Dredd,IMD,Resish和下游抗菌肽基因ATTA和ATTB,表明先天性免疫反应降低。随后的研究表明,温和蝇与Dα6-柔软的双突变体之间的病毒滴度没有显着差异,这表明IMD途径在抗病毒防御中的作用取决于Dα6。总的来说,我们的发现阐明了NACHR信号传导与IMD途径之间的复杂相互作用,从而介导抗病毒免疫,突出了nachR靶向化合物的潜力,以无意中影响昆虫宿主中的病毒动力学。这些知识可能会为综合的害虫管理策略的发展提供信息,这些策略考虑了杀虫剂使用的更广泛的生态影响。
Bates,D.,Machler,M.,Bolker,B.M。,&Walker,S.C。(2015)。使用LME4 [稀疏矩阵方法; lin- ear混合模型;惩罚最小二乘; Cholesky分解]。统计软件杂志,67(1),1-48。https:// doi。org/10。18637/jss。V067。I01Binggeli,O。,Neyen,C。,Poidevin,M。,&Lemaitre,B。(2014)。预防性氧化酶激活是果蝇中微生物感染的生存所必需的。PLOS病原体,10(5),E1004067。https:// doi。org/10. 1371/journal。ppat。1004067Biondi,A.,Wang,X。,&Daane,K。M.(2020)。三种亚洲幼体寄生虫对密切相关的果蝇物种的宿主偏好:对果蝇的生物控制的影响。害虫科学杂志,94(2),273–283。https://doi。Org/10. 1007/S1034 0-020-01272-0 Bolda,M。P.和Goodhue,R。E.(2010)。斑点的果蝇斑点:新成立的害虫的潜在经济影响。农业和资源经济学更新加利福尼亚大学,吉尼尼基金会,13(3),5-8。Boulet,M.,Renaud,Y.,Lapraz,F.,Benmimoun,B.,Vandel,L。,&Waltzer,L。(2021)。 果蝇成人造血系统的表征揭示了罕见的细胞种群,具有分化和产生潜力。 细胞和开发生物学的边界,9,739357。https://doi。Org/10. 3389/fcell。2021。739357Boulétreau,M。,&Fouillet,P。(1982)。 对果蝇的天然种群中膜翅目寄生虫适合性的遗传变异性。 comptes Rendus。Boulet,M.,Renaud,Y.,Lapraz,F.,Benmimoun,B.,Vandel,L。,&Waltzer,L。(2021)。果蝇成人造血系统的表征揭示了罕见的细胞种群,具有分化和产生潜力。细胞和开发生物学的边界,9,739357。https://doi。Org/10. 3389/fcell。2021。739357Boulétreau,M。,&Fouillet,P。(1982)。对果蝇的天然种群中膜翅目寄生虫适合性的遗传变异性。comptes Rendus。AcadémieDesSciences,295(13),775–778。Boulétreau,M。和Wajnberg,E。(1986)。 两种同胞寄生虫囊状对其宿主的幼虫果蝇果蝇的遗传和表观差异的比较反应。 entomogia oferimentis et applipata,41(2),107–114。 Bouletreau-Merle,J。,Terrier,O。,&Fouillet,P。(1986)。 发育温度是平衡多态性的选择性因素。 melanogaster种群。 热生物学杂志,11(3),143–149。https:// doi。org/10. 1016/0306-4565(86)90038-0 Calabria,G.,Maca,J.,Bachli,Bachli,G.,Serra,L。,L。,&Pascual,M.(2012)。 欧洲潜在的害虫果蝇(Diptera:果蝇科)的潜在害虫物种的首次记录。 应用昆虫学杂志,136(1-2),139–147。 https:// doi。org/10. 1111/j。1439-0418。2010. 2010. 01583. x Carton,Y.,Bouletreau,M.,Alphen,J.J.M。M. V.,&Lenteren,J。C. C. V.(1986)。 果蝇寄生黄蜂。 在M. Ashburner,H。L. Carson和J. N. Thompson(编辑) ),果蝇的遗传学和生物学(第1卷 3,pp。 348–394)。 学术出版社。 Carton,Y.,Poirié,M。和Nappi,A。J. (2008)。 昆虫免疫对寄生虫的抗性。 昆虫科学,15(1),67-87。 https:// doi。org/10. 1111/j。1744-7917.2008. 00188. x Cavigliasso,F.,Gatti,J.-L.,Colinet,D。,&Poirié,M。(2021)。 温度对寄生虫和果蝇宿主物种之间免疫相互作用的影响。 生物控制,63(1),40-47。Boulétreau,M。和Wajnberg,E。(1986)。两种同胞寄生虫囊状对其宿主的幼虫果蝇果蝇的遗传和表观差异的比较反应。entomogia oferimentis et applipata,41(2),107–114。Bouletreau-Merle,J。,Terrier,O。,&Fouillet,P。(1986)。 发育温度是平衡多态性的选择性因素。 melanogaster种群。 热生物学杂志,11(3),143–149。https:// doi。org/10. 1016/0306-4565(86)90038-0 Calabria,G.,Maca,J.,Bachli,Bachli,G.,Serra,L。,L。,&Pascual,M.(2012)。 欧洲潜在的害虫果蝇(Diptera:果蝇科)的潜在害虫物种的首次记录。 应用昆虫学杂志,136(1-2),139–147。 https:// doi。org/10. 1111/j。1439-0418。2010. 2010. 01583. x Carton,Y.,Bouletreau,M.,Alphen,J.J.M。M. V.,&Lenteren,J。C. C. V.(1986)。 果蝇寄生黄蜂。 在M. Ashburner,H。L. Carson和J. N. Thompson(编辑) ),果蝇的遗传学和生物学(第1卷 3,pp。 348–394)。 学术出版社。 Carton,Y.,Poirié,M。和Nappi,A。J. (2008)。 昆虫免疫对寄生虫的抗性。 昆虫科学,15(1),67-87。 https:// doi。org/10. 1111/j。1744-7917.2008. 00188. x Cavigliasso,F.,Gatti,J.-L.,Colinet,D。,&Poirié,M。(2021)。 温度对寄生虫和果蝇宿主物种之间免疫相互作用的影响。 生物控制,63(1),40-47。Bouletreau-Merle,J。,Terrier,O。,&Fouillet,P。(1986)。发育温度是平衡多态性的选择性因素。melanogaster种群。热生物学杂志,11(3),143–149。https:// doi。org/10. 1016/0306-4565(86)90038-0 Calabria,G.,Maca,J.,Bachli,Bachli,G.,Serra,L。,L。,&Pascual,M.(2012)。欧洲潜在的害虫果蝇(Diptera:果蝇科)的潜在害虫物种的首次记录。应用昆虫学杂志,136(1-2),139–147。https:// doi。org/10. 1111/j。1439-0418。2010. 2010. 01583. x Carton,Y.,Bouletreau,M.,Alphen,J.J.M。M. V.,&Lenteren,J。C. C. V.(1986)。果蝇寄生黄蜂。在M. Ashburner,H。L. Carson和J. N. Thompson(编辑),果蝇的遗传学和生物学(第1卷3,pp。348–394)。学术出版社。Carton,Y.,Poirié,M。和Nappi,A。J. (2008)。 昆虫免疫对寄生虫的抗性。 昆虫科学,15(1),67-87。 https:// doi。org/10. 1111/j。1744-7917.2008. 00188. x Cavigliasso,F.,Gatti,J.-L.,Colinet,D。,&Poirié,M。(2021)。 温度对寄生虫和果蝇宿主物种之间免疫相互作用的影响。 生物控制,63(1),40-47。Carton,Y.,Poirié,M。和Nappi,A。J.(2008)。昆虫免疫对寄生虫的抗性。昆虫科学,15(1),67-87。https:// doi。org/10. 1111/j。1744-7917.2008. 00188. x Cavigliasso,F.,Gatti,J.-L.,Colinet,D。,&Poirié,M。(2021)。温度对寄生虫和果蝇宿主物种之间免疫相互作用的影响。生物控制,63(1),40-47。昆虫,12(7),647。https://doi。Org/10。3390/Insec TS120 70647 Cavigliasso,F.,Mathe-Hubert,H.,H.,Kremmer,L.,L.寄生虫黄蜂的毒液组成的快速和差异进化取决于宿主应变。毒素,11(11),629。https://doi。Org/10. 3390/Toxin S1111 0629 Chabert,S.,Allemand,R.,Poyet,M.,Eslin,P。和Gibert,P。,&Gibert,P。(2012)。欧洲寄生虫(膜翅目)能够控制一种新的侵入性亚洲害虫,即苏木果。https://doi。org/10. 1016/j。Biocontrol。2012。05. 005 Colombari,F.,Tonina,L.,Battisti,A。,A。,&Mori,N。(2020)。在低温下,果蝇果蝇(Hymenoptera:diapriidae)的表现,苏木氏果蝇(二翅目:果蝇科)的一般阶层。昆虫科学杂志,20(3),1-5。https://doi。org/10. 1093/jisesa/ieaa039 Daane,K。M.,Wang,X.G.,Biondi,A.,Miller,B.,Miller,J.C.,J.C.,Riedl,H.