抽象的心脏障碍在肌营养不良症中是经典的,其管理依赖于医疗药物。机械通气用于治疗呼吸衰竭,但会影响心脏功能。我们旨在研究杜钦(DMD)患者(DMD)和贝克尔(BMD)肌肉营养不良的患者心脏功能的自然史(HMV)。我们审查了在我们机构中遵循的DMD和BMD患者的图表,以在基线时在HMV启动和超声心动图数据上获得通风设置,并结束后跟进,以及发作心脏事件和胸腔机械并发症。我们分析了心脏事件的累积发生率以及超声心动图参数的演变及其与通风设置的关联。我们包括111例患者(101例DMD和10 BMD)。中位年龄为21岁[18-26],肺中值生命力(VC)的预测[10-24] 15%。所有患者均使用HMV,使用气管切开术进行了46%的通风。After a median follow up of 6.3 years, we found a slight decrease of the left ventricular ejection fraction (LVEF) (45% at end follow up vs 50% at baseline P = .019) and a stabilization of the LV end diastolic diameter indexed (LVEDD indexed 29.4mm/m 2 vs 30.7mm/m 2 at end follow up, P = .17).潮汐体积(VT)水平与LVEF下降的年率成反比(r = 0.29,p = .025)。左心房(LA)直径随机械通气(24mm vs 20mm,p = .039)降低,我们发现收缩期肺压的降低(35mm Hg vs 25mm Hg,P = .011)。心脏事件的累积发生率为12.6%。气胸发生在4%的患者中。继发于气管插件的低氧逮捕发生在4%的侵入性通气患者中。HMV无害,降低肺部压力,除了心脏保护药物外,还可以保护心脏的心脏。在HMV上DMD和BMD的患者中,心脏事件的累积发生率仍然适中,气胸发生率很少。
本演示文稿包括1933年《证券法》第27A条的“前瞻性陈述”,以及修订的1934年《证券交易法》第21E条。These statements express a belief, expectation or intention and are generally accompanied by words that convey projected future events or outcomes such as “believe,” “may,” “will,” “estimate,” “continue,” “anticipate,” ”assume,” “design,” “intend,” “expect,” “could,” “plan,” “potential,” “predict,” “seek,” “should,” “would” or by variations of such words or by similar expressions.前瞻性陈述包括与Regenxbio的未来运营,临床试验,成本和现金流有关的陈述。Regenxbio将这些前瞻性陈述基于其当前的期望,假设和分析,鉴于其经验以及对历史趋势,当前状况和预期的未来发展的看法以及Regenxbio认为在这种情况下适当的因素。但是,实际结果和发展是否会符合Regenxbio的期望和预测,都有许多风险和不确定性,包括Regenxbio与Abbvie的合作结果和其他因素的结果,其中许多因素超出了Regenxbio的控制。本演示文稿中所作的所有前瞻性陈述均由本文包含或提及的警告陈述明确符合条件。可能无法实现预期的实际结果或发展,或者即使实质上实现,它们也可能对Regenxbio或其业务或业务或业务的预期后果或影响。For a summary of certain of these risks and uncertainties, refer to the “Risk Factors” and “Management's Discussion and Analysis of Financial Condition and Results of Operations” sections of REGENXBIO's Annual Report on Form 10-K for the year ended December 31, 2023 and comparable “risk factors” sections of REGENXBIO's Quarterly Reports on Form 10-Q and other filings, which have been filed with the U.S. Securities and Exchange Commission (SEC) and are可在SEC网站www.sec.gov上找到。此类陈述不能保证未来的绩效,实际结果或发展可能与前瞻性陈述中的预测。读者被告知不要过分依赖本演示文稿中包含的前瞻性陈述。这些前瞻性陈述仅在本演讲之日起说。除法律要求外,Regenxbio不承担任何义务,并特别拒绝任何义务,以更新或修改任何前瞻性陈述,无论是由于新信息,未来事件还是其他方式。
根据肌肉含量控制调整的微障碍蛋白表达是正常肌肉肌肉活检中野生型(正常)肌营养不良蛋白的水平,从基线时从二头肌中收集,RGX-202升高后CK升高后CK水平与肌肉损伤相关,并且在Divuchenne Davate Divage Dive Dive Divbrs a usce损伤与肌肉均均匀升高。
摘要:从CRISPR/CAS9发现得出的主要编辑技术允许在特定基因中对选定的核苷酸进行修改。我们用它在外显子9、20、35、43、55和61中插入了特定的点突变,该基因肌营养不良蛋白编码为肌营养不良蛋白,该基因在DMD患者中不存在。分别用Prime Editor 2(PE2)和PE3获得了HEK293T细胞中DMD基因的11%和21%所需的突变。三种重复治疗将PE2的特定突变的百分比增加到16%。在单次治疗后,原始的邻接基序(PAM)序列中的额外突变提高了PE3结果至38%。我们还对患者成肌细胞中DMD基因的外显子6中的外显子6中的c.428 g>进行了校正。成肌细胞电穿孔分别显示高达8%和28%的修饰。成肌细胞校正导致通过蛋白质印迹检测到的肌管中肌营养不良蛋白的表达。因此,可以使用序数编辑来校正DMD基因中的点突变。
背景:Duchenne肌肉营养不良(DMD)是一种遗传疾病,会导致肌肉无力并从幼儿开始。为了治疗其并发症,康复计划包括物理疗法,主要是在肌肉骨骼和疾病进化中出现的呼吸并发症。本研究旨在探索有或没有家庭计划的物理治疗对DMD儿童运动功能的影响。方法:进行了一年的随机对照试验(一组接受家庭和常规物理疗法,另一种进行常规物理疗法)。运动功能。结果:DMD参与者参加了这项研究。根据MFM量表的结果,在居家和调用物理疗法组中保持了更好的运动功能(p <0.05)。其余变量没有实现统计学上的显着变化。结论:我们的结果表明,与DMD的参与者在家庭中对常规治疗相辅相成,可以在家庭治疗中保持更好的运动功能。©2023 Elsevier Inc.保留所有权利。
divenne肌肉营养不良(DMD)是由于缺乏肌营养不良蛋白而导致的致命肌肉疾病,该疾病维持肌肉膜完整性。我们使用腺嘌呤碱基编辑器(ABE)修改了肌营养不良蛋白基因的剪接供体部位,从而导致外显子51(∆EX51)的常见DMD缺失突变在人类诱导的多能干细胞中得出的外显子细胞中的常见DMD缺失突变,并恢复了耐肿瘤的表达。主要的编辑还能够在这些心肌细胞中重新培养肌营养不良蛋白的开放式阅读框。用腺体相关的病毒血清型-9编码ABE组件作为分裂 - inintein跨跨切割系统的肌内注射ΔEX51小鼠允许体内基因编辑和疾病校正。我们的发现证明了核苷酸编辑对基因组进行最小修饰校正不同DMD突变的有效性,尽管需要改进的递送方法,然后才能使用这些策略来充分编辑DMD患者的基因组。
divenne肌肉营养不良(DMD)是由肌营养不良蛋白表达受损引起的严重肌肉疾病。虽然线粒体功能障碍被认为在DMD中起着重要作用,但这种功能障碍的机制仍然有意义。在这里我们证明,在DMD和其他肌肉运动障碍中,大量的DLK1-DIO3聚集的miRNA(DD-MIRNA)在再生肌纤维和血清中的再生。为了表征这种功能障碍的生物学作用,在小鼠肌肉中同时在体内过度表达了14个DD-MIRNA。转录组分析揭示了肌肉异位过表达14个DD-MIRNA和MDX diaphragm的高度相似的变化,具有自然上调的DD-MIRNA。在通常失调的途径中,我们发现抑制线粒体代谢,尤其是氧化磷酸化(OXPHOS)。在IPS衍生的骨骼肌管中击倒DD-MIRNA导致OXPHOS活性增加。数据表明(1)DD-MIRNA是DMD肌肉中营养不良变化的重要介体,(2)线粒体代谢,尤其是通过协调的上调节的DD-MIRNA在DMD中靶向DMD。这些发现提供了有关肌肉营养不良中线粒体功能障碍的机理的洞察力。
摘要 杜氏肌营养不良症是一种 X 连锁隐性遗传性单基因疾病,因无法产生肌营养不良蛋白而引起。在大多数患者中,由于开放阅读框的破坏性突变,肌营养不良蛋白的表达丧失。尽管迄今为止在大量不同的治疗方法上做出了努力,但可用于治疗杜氏肌营养不良症的治疗方法仍然只是缓解和支持疾病症状,而不是治愈疾病。CRISPR/Cas9 技术的出现彻底改变了基因组编辑的范围,被认为是有效基因组工程的先驱。通过 CRISPR 删除或切除基因内 DNA,以及通过反义寡核苷酸诱导的 DNA 水平外显子跳跃的类似策略,是纠正杜氏肌营养不良症基因的新颖且有前途的方法,它们可以恢复截短但有功能的肌营养不良蛋白的表达。此外,CRISPR/Cas9 技术还可用于治疗 DMD,方法是去除重复的外显子、通过基于 HDR 的途径精确校正致病突变以及诱导补偿蛋白(如 utrophin)的表达。在本研究中,我们简要介绍了 DMD 的分子遗传学和 DMD 基因治疗的历史概述。我们特别关注了用于治疗 DMD 的 CRISPR/Cas9 介导的治疗方法。版权所有 ª 2020,重庆医科大学。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)发表的开放获取文章。
Duchenne肌肉营养不良(DMD)是由DMD基因突变引起的致命性,退化性肌肉疾病,导致严重降低或缺乏蛋白质肌营养不良蛋白。基因治疗策略旨在增加功能性肌营养不良蛋白(微型淋巴蛋白)的表达。准确量化肌营养不良蛋白/微型肺炎蛋白的能力对于评估基因转导水平至关重要。我们证明了一种新型肽免疫缺陷液相色谱 - 串联质谱法(IA-LC-MS/MS)测定法的验证和应用。数据表明,贝克尔肌肉营养不良和DMD组织中的肌营养不良蛋白表达相对于非疾病对照组织的平均值(n = 20)的平均值为4-84.5%(平均32%,n = 20)和0.4 - 24.1%(分别为5%,n = 20)。In a DMD rat model, biceps femoris tissue from dystrophin-de fi cient rats treated with AAV9.hCK.Hopti-Dys3978.spA, an adeno-associated virus vector containing a mini-dystrophin transgene, showed a dose-dependent increase in mini-dystrophin expression at 6 months post-dose, exceeding wildtype dystrophin高剂量的水平。验证数据表明,测定和测定内的精度≤20%(在量化的下限[LLOQ]下极限为≤25%),并且运行内和运行内相对误差在±20%以内(LLOQ时为±25%)。IA-LC-MS/MS准确地量化具有舒适灵敏度的人和临床前物种中的肌营养不良蛋白/微型肌营养素,可立即在临床前/临床试验中应用。
1中国科学院生命科学学院,中国北京101408; zhaoxiaoy@genomics.cn 2拉尔斯·博伦德(Lars Bolund)再生医学研究所,金丁欧(Europe)高级生命科学研究所,bgi-qingdao,bgi-shenzhen,qingdao 2666555,中国; qukunli@genomics.cn(K.Q. ); yanghm@genomics.cn(H.Y. ); bolund@biomed.au.dk(L.B.) 3 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C. ); lin.lin@biomed.au.dk(L.L.) 4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。 : +45-224119441中国科学院生命科学学院,中国北京101408; zhaoxiaoy@genomics.cn 2拉尔斯·博伦德(Lars Bolund)再生医学研究所,金丁欧(Europe)高级生命科学研究所,bgi-qingdao,bgi-shenzhen,qingdao 2666555,中国; qukunli@genomics.cn(K.Q.); yanghm@genomics.cn(H.Y.); bolund@biomed.au.dk(L.B.)3 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C. ); lin.lin@biomed.au.dk(L.L.) 4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。 : +45-224119443 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C.); lin.lin@biomed.au.dk(L.L.)4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。: +45-22411944