: 基于构建体的 DNA 打靶。核酸研究 39 : e82。 朱 CC,王 CC,孙 CS,许 C,尹 KC,朱 CY 和毕 FY( 1975 )通过氮源比较实验建立水稻花药培养的有效培养基。植物学报 15 : 1 - 11。 Faure, J - E, Digonnet, C 和 Dumas, C( 1994 )玉米配子的粘附和融合的体外系统。科学 263 : 1598 - 1600。 Holm, PB, Knudsen, S, Mouritzen, P, Negri, D, Olsen, FL 和 Roué, C( 1994 )从受精卵细胞机械分离的原生质体再生可育大麦植株。 Plant Cell 6 :531 – 543。Hwang, WY, Fu, Y, Reyon, D, Maeder, ML, Tsai, SQ, Sander, JD, Peterson, RT, Yeh, JR 和 Joung, JK (2013)利用 CRISPR-Cas 系统在斑马鱼中实现高效基因组编辑。Nat Biotechnol 31 :227 – 229。Jones, HD (2015)基因组编辑的监管不确定性。Nat Plants 1 :14011。Koiso, N, Toda, E, Ichikawa, M, Kato, N 和 Okamoto, T (2017)从水稻和玉米中分离的卵细胞和受精卵中基因表达系统的开发。Plant Direct 1 :e00010。 Kranz, E, Bautor, J 和 Lörz, H ( 1991 ) 单卵母细胞体外受精
belda的Eugeni,1,2 Voland高中,1瓦伦蒂娜·特雷尔利(Valentina tremali),3个白色falone ,4,5 Solia Adriouch, Tiphaine le Roy , 11,12 Maria Carlota Dao,1 Promi Das,13 Soraya Fellahi,14,15 Sofia Forslund,16 Nathalie Galleron,17 Tue H Hansen,8 Bridget Holmes,18 Boyang Ji,18克里斯蒂安·刘易森(Christian Lewinter),《举止的路易丝》, BSøndertoft,8 Sothea Touch, Jean-Michel Oppert,7,26 Michael Stumvoll, 17,30让·丹尼尔·扎克(Jean-Daniel Zucker),1,6弗雷德里克·贝克(FredrikBäcked),3杰罗恩·拉斯(Jeroen Raes),4,5 carine 1.7
佛罗里达州诺娜湖,2024年10月1日 - 自主共享移动解决方案的领先提供商Beep,Inc。今天宣布公开启动C.A.B.或密西西比州立大学(MSU)的校园自治巴士,标志着密西西比州和东南会议(SEC)的首次自治飞行员计划。于9月20日在MSU校园举行的剪彩仪式上庆祝,飞行员完成了数周的持续测试和验证,现在可供所有学生,MSU的教职员工和MSU的客人进行过境。C.A.B. 目前计划在今年年底之前运营,并将使MSU有机会评估如何在校园内使用自动运输系统来多样化其现有的运输资产车队。 MSU还在研究如何在农村环境中使用电力和共享的自动迁移率。 “ MSU是一个拥有良好运输网络的主要教育机构,作为创新过境的领导者,我们一直在寻找新的移动技术。 这就是为什么我们很高兴能亲自学习蜂鸣器的自动班车如何为我们的学生,教职员工和城市提供增强和扩展的运输选择。” “我们从该试点计划中收集的数据将有助于我们更好地了解骑手对自动运输的看法,以及这些解决方案如何为学生和教职员工提供便利的方式,以安全有效地到达目的地。” C.A.B. C.A.B. 计划操作C.A.B.目前计划在今年年底之前运营,并将使MSU有机会评估如何在校园内使用自动运输系统来多样化其现有的运输资产车队。MSU还在研究如何在农村环境中使用电力和共享的自动迁移率。“ MSU是一个拥有良好运输网络的主要教育机构,作为创新过境的领导者,我们一直在寻找新的移动技术。这就是为什么我们很高兴能亲自学习蜂鸣器的自动班车如何为我们的学生,教职员工和城市提供增强和扩展的运输选择。”“我们从该试点计划中收集的数据将有助于我们更好地了解骑手对自动运输的看法,以及这些解决方案如何为学生和教职员工提供便利的方式,以安全有效地到达目的地。” C.A.B.C.A.B.计划操作飞行员计划由两次电动蜂鸣式班车组成,一次沿着2.4英里的路线一次运行,其中包括关键目的地的五个不同的停靠站:旧的Main,Giles,Giles,College Time,Cotton District和Sanderson Center。
技术咨询委员会(“ TAC”)于2024年5月2日(星期四)下午1:06在美国商品期货交易委员会(“ CFTC”或“委员会”)总部会议中心举行的公开会议,位于新泽西州华盛顿州华盛顿州华盛顿州3155街3号拉斐特中心,会议由五个演讲组成。演讲的主题是:(1)美联储(“喂养”)和人工智能(“ AI”);推进负责任的创新; (2)从市场自动化和要观看的问题中收获; (3)国家标准技术研究所(“ NIST”)AI风险管理框架; (4)有关美国财政部(“财政”)部门在金融领域的AI的网络安全报告的演讲; (5)讨论和考虑新兴和不断发展的技术小组委员会报告(“小组委员会报告”)关于金融市场负责的AI。TAC成员出席会员Carole House,居住地,Terranet Ventures Inc.,TAC主席Ari Redbord,法律和政府事务主管,TRM Labs,TAC副主席Nikos Andrikogiannopoulos,创始人兼首席执行官兼首席执行官,Metrika Dan Awrey,Metrika Dan Awrey,康奈尔法律学校的COATDINGE,CORNINI,COND型官员,Firate Conder&Firate a Fight of Firate auld of Firate cond&First Condrik of Firate auldial a。官员兼副助理秘书,董事长网络安全和关键基础设施保护局乔纳·克兰恩(Jonah Crane),克拉罗斯集团(Klaros Group),合伙人Sunil Cutinho,首席信息官,CME Group Cantrell Dumas,衍生品政策董事,更好的市场,更好的市场和金融创新,亚马逊网络服务史丹利·古齐克(Stanley Guzik)国家期货协会集中数据科学和分析总监Steve Suppan,农业与贸易政策研究所高级政策分析师Corey当时,当时,全球政策副总裁,Circle Nicol Turner Lee,治理研究高级研究员兼技术创新中心主任,Brokings Institation Institation Michael Inceering of Michigigan Adam Adam Adam Adam Adam Adam Adam Adam Adam Inceering Inceering Incemant of Michigiga
Co‐PI(s): Matt Churchfield 1 , Marc Day 1 , Georgios Deskos 1 , Caroline Draxl 1 , Nicholas Hamilton 1 , Marc Henry de Frahan 1 , Jon Rood 1 , Ashesh Sharma 1 , Ganesh Vijayakumar 1 , Ann Almgren 2 , Aaron Lattanzi 2 , Jean Sexton 2 , Stuart Slattery 3 , Melissa Allan‐Dumas 3 , Matt Norman 3 , Mark Taylor 4 , Andrew Bradley 4 , Lawrence Cheung 4 , Philip Sakievich 4 , Maciej Waruszewski 4 , Sonya Smith 5 , Lian Shen 6 , François Blanchette 7 1: National Renewable Energy Laboratory, Golden, CO 80401 2: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3:橡树岭国家实验室,橡树岭,田纳西州37830 4:桑迪亚国家实验室,阿尔伯克基,新墨西哥州87185 5:霍华德大学,华盛顿特区,华盛顿特区,20059年6月6日:明尼苏达州明尼苏达州,明尼苏达大学,明尼苏达大学55455 55455 7:加利福尼亚大学,加利福尼亚大学,CA 95343的一部分,一部分,一部分,一部分劳动,一部分征集了一部分,一部分劳动,一部分劳动,一部分劳动,一部分劳动,一部分是一部分,一部分是一部分劳动。 (DOE'S)浮动海上风力射击旨在降低到2035年浮动海上风能的水平成本(LCOE)。Flowmas Energy Earthshot Research Center(EERC)将提供必要的基础研究,以实现这一积极的时间表的突破。对气象海洋环境中浮动海上风力涡轮机的条件,负载和动力学的了解和模型非常缺乏,尤其是在极端情况下。一个人无法完全优化知识渊博的系统,并且不存在足够的模型。Flowmas从数学,计算和大气 - 科学背景中融合了研究人员,以更好地模型,并更好地理解从气候尺度到风力涡轮机浮动平台和实现风能所需的叶片的动态。Building on DOE investments in high‐fidelity models for climate and land‐based wind energy that can exploit exascale‐class computing, FLOWMAS researchers will create a suite of high‐fidelity codes for floating offshore wind energy that incorporates the microscale (i.e., wind turbines, floating platforms, and mooring systems), mesoscale (i.e., regional weather dynamics), and global/climate scales.研究人员将使用高更多的模拟和正在进行的DOE支持的现场活动来创建数据驱动的替代模型,这些模型在计算上效率高,并且可以探索许多系统条件,并且在长时间的时间内无法使用计算昂贵的高档高档模型无法访问。最后,开发的模型将利用Exascale计算的功率来创建对浮动海上风能系统的新理解,包括气候变化将如何影响海上风能资源,浮动风电场和涡轮机唤醒动态的物理,以及在操作和极端事件中浮动风力涡轮机的负载和动态。
[1] H.-K。 Mao,B。Chen,J。Chen,K。Li,J.-F。 Lin,W。Yang和H. Zheng,《高压科学技术》的最新进展,Matter Radiat。极端1,59(2016)。[2] C. Buzea和K. Robbie,组装了超导元素的难题:评论,超级跟踪。SCI。 技术。 18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。SCI。技术。18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。18,R1(2004)。[3] J.Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。修订版Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。121,037004(2018)。[4] J. Hamlin,高压高金属元素的超导性,物理。c(阿姆斯特丹,内斯。)514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。514,59(2015)。[5] C. Zhang,X。He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。社区。13,5411(2022)。[6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。修订版b 105,224511(2022)。[7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。修订版Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。130,256002(2023)。修订版b 83,220512(2011)。修订版b 78(2008)。极端5,038101(2020)。[8] M. Sakata,Y。Nakamoto,K。Shimizu,T。Matsuoka和Y. Ohishi,在216 GPA的压力下,CA-VII的超导状态低于29 K的临界温度。[9] M. Debessai,J。J。Hamlin和J. S. Schilling,Trivalentd-Electron超导体SC,Y,LA和LU中TC的压力依赖性的比较与Megabar压力,物理。[10] E. Gregoryanz,C。Ji,P。Dalladay-Simpson,B。Li,R。T。Howie和H.-K。毛,您一直想知道的有关金属氢的一切,但害怕问,径向。[11] P. Loubeyre,F。Occelli和P. Dumas,同步红外光谱证据,证明可能过渡到金属氢,自然577,631(2020)。[12] C. Ji,B。Liu,W.N Liu,J.,A。Majumdar,W。Luo,R。Ahuja,J。Shu,J。Wang,J。Wang,S。Sinogeikin,Y.Meng,V。B. Prakapenka,E。Greenberg,E。Greenberg,R.Xu,R.Xu,R.Xu,X. Huang,W。Yang,W。Yang,G。Shen,W。Shen,W。L. L. Mao,W。Mao和H.毛,氢中的超高压等值电子过渡,自然573,558(2019)。[13] M. I. Eremets,A。P。Drozdov,P。Kong和H. Wang,在350 GPA高于350 GPA的压力下的半金属分子氢。物理。15,1246(2019)。[14] H. Y. Geng,关于金属氢的公开辩论,以提高高压研究,物质辐射。极端2,275(2017)。[15] C. Ji,B。Li,W。Liu,J。S. Smith,A。Björling,A。Majumdar,W。Luo,R。Ahuja,J。Shu,
1. Kiguchi T、Okubo M、Nishiyama C 等人。全球院外心脏骤停:国际复苏联络委员会(ILCOR)首份报告。复苏。2020;152:39-49。2. Spaulding CM、Joly LM、Rosenberg A 等人。院外心脏骤停幸存者的即时冠状动脉造影。N Engl J Med。1997;336(23):1629-1633。3. Staer-Jensen H、Nakstad ER、Fossum E 等人。复苏后心电图用于选择院外心脏骤停中可立即进行冠状动脉造影的患者。Circ Cardiovasc Interv。 2015;8(10):e002784。4. O'Gara PT、Kushner FG、Ascheim DD 等人。2013 年 ACCF/AHA ST 段抬高型心肌梗死管理指南:执行摘要:美国心脏病学会基金会/美国心脏协会实践指南工作组报告。循环。2013;127(4):529-555。5. Ibanez B、James S、Agewall S 等人。2017 年 ESC ST 段抬高型急性心肌梗死管理指南:欧洲心脏病学会(ESC)ST 段抬高型急性心肌梗死管理工作组。欧洲心脏杂志。 2018;39(2):119 ‐ 177。6. Collet JP、Thiele H、Barbato E 等人。2020 年 ESC 关于无持续 ST 段抬高型患者急性冠状动脉综合征管理的指南。Rev Esp Cardiol(英语版)。2021;74(6):544。7. Gorjup V、Radsel P、Kocjancic ST、Erzen D、Noc M。心肺复苏成功后发生急性 ST 段抬高型心肌梗死。复苏。2007;72(3):379 ‐ 385。8. Lemkes JS、Janssens GN、van der Hoeven NW 等人。无 ST 段抬高型心脏骤停后的冠状动脉造影。N Engl J Med。 2019;380(15):1397 ‐ 1407。9. Kern KB、Radsel P、Jentzer JC 等。无 ST 段抬高型心脏骤停后早期冠状动脉造影与不早期冠状动脉造影的随机试点临床试验:PEARL 研究。循环。2020;142(21):2002 ‐ 2012。10. Pareek N、Kordis P、Webb I、Noc M、MacCarthy P、Byrne J。心导管实验室对院外心脏骤停的现代管理:现状和未来方向。Interv Cardiol Rev。2019;14(3):113 ‐ 123。11. Desch S、Freund A、Akin I 等。无 ST 段抬高型心脏骤停后的血管造影。 N Engl J Med 。2021;385:2544 ‐ 2553。12. Dumas F、Manzo ‐ Silberman S、Fichet J 等。早期心脏肌钙蛋白 I 测量能否帮助预测院外心脏骤停幸存者的近期冠状动脉闭塞?Crit Care Med 。2012;40(6):1777 ‐ 1784。13. Waldo SW、Chang L、Strom JB、O'Brien C、Pomerantsev E、Yeh RW。预测心脏骤停复苏患者中是否存在急性冠状动脉病变。Circ Cardiovasc Interv 。2015;8(10):e002198。14. Pareek N、Kordis P、Beckley ‐ Hoelscher N 等。一种用于早期预测院外心脏骤停后神经系统结果的实用风险评分:MIRACLE2。欧洲心脏杂志。2020;41:4508 ‐ 4517。15. Smith SW、Dodd KW、Henry TD、Dvorak DM、Pearce LA。使用改良的 Sgarbossa 规则中的 ST 段抬高与 S 波比率诊断左束支传导阻滞下的 ST 段抬高型心肌梗死。紧急医学年鉴。2012;60(6):766 ‐ 776。16. Sgarbossa EB、Pinski SL、Gates KB、Wagner GS、GUSTO ‐ I 研究者。心室起搏心律存在下急性心肌梗死的早期心电图诊断。美国心脏杂志。 1996;77(5):423 - 424. 17. McDaniel MC, Galbraith EM, Jeroudi AM, et al. ST 段升高患者冠状动脉罪犯病变的定位