第二次试验:使用这种方法,菌丝体是从蘑菇种子和吸管中生长的。混合物填充后,将菌丝体与碳水化合物源(MAIDA)结合在一起,并将其放入模具中七天以创建砖。与第一个步道相比,将砖涂有腻子,结合的强度和耐用性略有提高。
可逆质子陶瓷电化学电池(R-PCEC)具有在中温下高效发电和绿色制氢的潜力。然而,传统空气电极在低温下工作的氧还原反应(ORR)和氧析出反应(OER)动力学缓慢,阻碍了 R-PCEC 的商业化应用。为了应对这一挑战,这项工作介绍了一种新方法,该方法基于同时优化体相金属-氧键和原位形成金属氧化物纳米催化剂表面改性。该策略旨在加速表现出三重(O 2 − 、H + 、e − )电导率的空气电极的 ORR/OER 电催化活性。具体来说,这种工程空气电极纳米复合材料-Ba(Co 0.4 Fe 0.4 Zr 0.1 Y 0.1 ) 0.95 Ni 0.05 F 0.1 O 2.9- 𝜹 在 R-PCEC 中表现出显著的 ORR/OER 催化活性和出色的耐久性。峰值功率密度从 626 提高到 996 mW cm − 2 ,并且在 100 小时循环期内具有高度稳定的可逆性,证明了这一点。这项研究提供了一种合理的设计策略,以实现具有出色运行活性和稳定性的高性能 R-PCEC 空气电极,从而实现高效和可持续的能源转换和存储。
本演示文稿包含《1995 年私人证券诉讼改革法案》所定义的“前瞻性陈述”,涉及重大风险和不确定性,包括有关公司计划(包括 VERVE-101)的潜在优势和治疗潜力的陈述。本演示文稿中包含的所有陈述(历史事实陈述除外),包括有关公司战略、未来运营、未来财务状况、前景、计划和管理目标的陈述,均为前瞻性陈述。“预期”、“相信”、“继续”、“可能”、“估计”、“预计”、“打算”、“可能”、“计划”、“潜在”、“预测”、“项目”、“应该”、“目标”、“将”、“会”和类似表达旨在识别前瞻性陈述,但并非所有前瞻性陈述都包含这些识别词。任何前瞻性陈述均基于管理层当前对未来事件的预期,并受多种风险和不确定因素的影响,这些风险和不确定因素可能导致实际结果与此类前瞻性陈述中所述或暗示的结果存在重大不利差异。这些风险和不确定性包括但不限于与公司有限的经营历史有关的风险;公司及时提交和获得其产品候选物的监管申请批准的能力;推进其产品候选物的临床试验;按照预期的时间表或完全启动、招募和完成其正在进行的和未来的临床试验;正确估计公司产品候选物的潜在患者群体和/或市场;在临床试验中复制在 VERVE-101、VERVE-102 和 VERVE- 201 的临床前研究和/或早期临床试验中发现的积极结果;在当前和未来临床试验中按照预期的时间表推进其产品候选物的开发;获得、维护或保护与其产品候选物相关的知识产权;管理费用;并筹集实现其业务目标所需的大量额外资本。有关其他风险和不确定性以及其他重要因素的讨论,其中任何因素都可能导致公司的实际结果与前瞻性陈述中的结果不同,请参阅“风险因素”部分,以及公司最近向美国证券交易委员会提交的文件和公司未来向美国证券交易委员会提交的其他文件中对潜在风险、不确定性和其他重要因素的讨论。此外,本演示文稿中包含的前瞻性陈述代表公司截至本新闻稿之日的观点,不应被视为代表公司截至本新闻稿之日之后任何日期的观点。公司预计后续事件和发展将导致公司的观点发生变化。然而,尽管公司可能会选择在未来某个时间点更新这些前瞻性陈述,但公司明确表示不承担任何此类义务。
磷酸铁锂 (LiFePO4) 电池由发电电化学电池组成,为电气设备供电。LiFePO4 电池由阳极、阴极、隔膜、电解质以及正极和负极集电器组成。阳极端子充当锂离子源。电解质通过隔膜将带正电的锂离子从阳极输送到阴极,反之亦然。锂离子的运动在阳极中产生自由电子,因此,电子将通过外部电路流到阴极,即正极,因此,当电负载连接到电池上时,电流将从正极流到负极。电池由同心交替的负极和正极材料层组成,隔膜层位于其间。然后将电解质注入电池中以允许离子传导。
储能将在加州转型能源系统中发挥越来越重要的作用。具体而言,长时储能(储能时间长达 8 小时或更长时间)在夜间和阴天等关键时期(尤其是在冬季)将发挥重要作用。该项目研究了各种情景,以更好地了解长时储能对于实现加州 2045 年电力零售零排放目标的价值,同时探索未来储能所需的时间、成本和其他属性。储能需求取决于多种因素,包括发电技术的选择、输电可用性、转移负荷的能力以及电网的许多其他细节。该项目表明,加州的太阳能电网将受益于安装 8 小时储能,其功率等级可以满足峰值需求,而峰值需求通常发生在日落之后。如果 40% 效率的 100 小时储能每千瓦时成本 ($/kW) 低于锂离子电池的 $/kW 成本,或者 80% 效率的 100 小时储能每千瓦成本低于锂离子电池的两倍,则预计较长时间储能(例如 100 小时)将占据 10% 的市场份额。随着 2045 年能源转型的成熟,预计 100 小时储能将占据越来越大的市场份额。高往返效率很重要,锂离子将系统级效率目标设定为 85% 左右。对于不经常使用的储能,低效率更容易接受,正如 100 小时储能所预期的那样。结果在很大程度上取决于成本假设和对可采用的每种资源数量的上限。如果为这些资源确定了低成本的场地,更多的风能和地热能的选择可能会大大增加。因此,该报告的重点是确定趋势,而不是确定具体目标,并提醒读者在这种背景下使用结果。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
• 长时 PHES 提供可调度且灵活的发电,以更深的储备容量满足峰值需求,在太阳能高峰时段储存过剩发电,并覆盖长期风能或太阳能干旱的尾部风险。• PHES 还产生同步发电,类似于现有的热发电技术,并与现有能源系统的配置保持一致。这使得 PHES 能够在系统强度、电压控制、惯性、黑启动和频率控制方面提供众多优势,尤其是与短时 BESS 相比。• PHES 具有 50 至 100 年或更长的已证实资产寿命。这比相对较新且未经证实的 BESS 技术的资产寿命长得多,后者估计约为 15 – 20 年。• 与 BESS 技术相比,PHES 能够在更大程度上维持其原有的存储容量和放电能力,并进行持续维护,而 BESS 技术通常会在资产的整个生命周期内经历存储和放电能力的重大退化。
•长时间的PHE提供可调节且灵活的生成,以满足较高的储备能力,在太阳小时高峰期间存储过量的生成,并覆盖长风或太阳干旱的尾巴风险。•PHE还会产生同步生成,该生成类似于现有的热产生技术,并与现有能量系统的配置保持一致。这使PHE可以在系统强度,电压控制,惯性,黑色启动和频率控制方面提供许多好处,尤其是与较短的持续时间相比。•PHE的资产寿命为50至100年或更长时间。这要比相对较新的BESS技术的资产寿命要长得多,这些资产的寿命约为15 - 20年。•与BESS技术相比,PHE能够保持其原始的存储能力和排放能力,并具有持续的维护,而Bess技术通常会在资产的一生中经历材料退化和其存储和放电能力。
• 长时 PHES 提供可调度且灵活的发电,以更深的备用容量满足峰值需求,在太阳能高峰时段储存多余的发电,并承担长期风能或太阳能干旱的尾部风险。 • PHES 还产生同步发电,类似于现有的热能发电技术,并与现有能源系统的配置保持一致。这使得 PHES 能够在系统强度、电压控制、惯性、黑启动和频率控制方面提供许多好处,尤其是与短时 BESS 相比。 • PHES 的资产寿命约为 50 至 100 年或更长。这比相对较新且未经证实的 BESS 技术的资产寿命长得多,后者估计约为 15 - 20 年。 • 与 BESS 技术相比,PHES 能够在持续维护的情况下在更大程度上保持其原始存储容量和放电能力,而 BESS 技术通常会在资产的整个生命周期内经历存储和放电能力的重大退化。