摘要 — 等离子体中的尘埃粒子由于不断吸收周围环境中的自由电子和离子而获得电荷。根据尘埃的大小和数量密度,这会显著改变局部等离子体以及全局放电特性。本文介绍了当尘埃以不同的数量密度和大小被引入等离子体时,源自氩等离子体的光发射变化以及放电电特性变化的测量结果。测量放电的电子信号(包括电极电位、电流和导数信号)可以确定复阻抗,从而确定放电等效电路的变化。将实验结果与二维尘埃等离子体流体模型的数值结果进行了比较。
封面照片:“这些 SeaWiFS 图像显示了中国大型沙尘暴的发展过程,以及它与气象系统的相互作用,后者将沙尘带到了遥远的太平洋。在第一张 1998 年 4 月 16 日拍摄的图像中,靠近海岸的亮黄褐色云层是沙尘暴的中心,被锋面系统推动。在 4 月 20 日至 24 日的后续图像中,低压系统周围的大气环流夹带了沙尘暴,并将其带到北太平洋。4 月 25 日,此次沙尘事件产生的沙尘到达了北美西海岸。” 致谢:特别感谢美国国家航空航天局 SeaWiFS 项目 Orbimage Inc.、戈达德太空飞行中心分布式主动档案中心和中国杭州第二海洋研究所。SeaWiFS 图像由美国国家航空航天局戈达德太空飞行中心 SeaWiFS 项目的 Norman Kuring 制作。页面设计由研究和专业服务部的 Robert Simmon 完成。随附文本由 Raytheon ITSS 的 James Acker 撰写。http://eosdata.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/asian_dust.html 免责声明:本文件中使用的名称和材料的呈现方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划分发表任何意见。意见、图
钢材、混凝土、木材、大理石等是世界上的建筑材料 [1]。由于混凝土的工程特性和性能,混凝土是建筑界使用最广泛的建筑材料之一。混凝土由水泥、水、沙子、细骨料和粗骨料混合而成,这些是混凝土的主要原材料。骨料和混合比例会影响混凝土的物理和化学性质,如可加工性、强度、稳定性和耐久性。一般来说,混凝土抗压强度高,抗拉强度低。因此,使用钢材、木材、外加剂、纤维等来提高混凝土的性能。随着建筑材料的快速增长和价格上涨,一些建筑公司已在建筑结构中使用轻质混凝土作为建筑材料。轻质混凝土的密度约为 800 kg/m 3 至 1850 kg/m 3。轻质混凝土分为轻质骨料混凝土、轻质泡沫混凝土 (LFC) 和加气混凝土 (AAC)。轻质混凝土是工业中使用最广泛的类型。
研究与质量量表(AHRQ)[8]。自评分量表共11个条目(分别以“是”、“否”和“不清楚”表示)[9]:(1)数据来源是否清楚(调查、文献综述)?(2)是否列出了暴露组和非暴露组(或病例和对照)的纳入和排除标准,或是否引用了以前的出版物?(3)是否给出了确定患者的时间阶段?(4)如果研究对象不是来自人群,那么研究对象是否连续?(5)评估者的主观因素是否掩盖了研究对象的其他方面?(6)描述任何确保质量的评估(例如,对主要结果指标的测试);(7)解释任何排除患者的分析;(8)描述如何评估和(或)控制混杂因素的措施;(9)解释在分析中如何处理缺失数据(如果可能);(10)总结患者的反应率和数据收集的完整性;(11)确定预期的不完整数据或如有后续跟进,则提供后续跟进结果。每项计1分。文献由2名研究人员按照评估方案进行评分,如有不一致的分数通过小组讨论解决。文献质量分为以下几类:低质量=0~3分;中等质量=4~7分;高质量=8~11分。
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。
1 沙特阿拉伯图沃阿卜杜拉国王科技大学 2 美国科罗拉多州博尔德市科罗拉多大学 CIRES 3 美国科罗拉多州博尔德市 NOAA 地球系统研究实验室
过敏性鼻炎(AR)和过敏性哮喘(AA)引起的背景是由房屋尘螨(HDM)•流行病学•英国约1950万人患有“过敏性呼吸道疾病”(ARD),400万人对HDM敏感。大约三分之一(132万)患有过敏性哮喘和过敏性鼻炎,三分之二(268万)仅具有过敏性鼻炎•目前可用的多种有症状的药物疗法,但具有中度至重度ARD的子集具有不受控制的疾病。•患有更严重疾病的患者对初级和二级护理的访问次数较高•公司估计中度和45%的严重AR的36%是不受控制的,中度25%,44%的严重AA + AR是不受控制的
上下文。宇宙灰尘在天体物理环境中无处不在,在那里它显着影响化学和光谱。粉尘晶粒可能通过从气相上的原子和分子的积聚到它们上生长。尽管它们的重要性,但只有少数研究计算了相关温度和物种的粘性系数,以及它们对谷物生长的直接影响。总体而言,粉尘及其生长的形成尚不清楚。目标。这项研究旨在计算与碳质粉尘晶粒相互作用的各种气体物种,以计算广泛的温度范围内的粘性系数,结合能和晶粒生长速率。方法。我们用反应力场算法进行了分子动力学模拟,以计算准确的粘附系数并获得结合能。这些结果用于建立成核区域的天体物理模型,以研究尘埃生长。结果。我们首次介绍了H,H 2,C,O和CO的粘性系数,其温度为50 K至2250 K的温度。此外,我们估计了碳质灰尘中H,C和O的结合能,以计算热值速率。结合积聚和解吸使我们能够确定碳尘的有效积聚率和升华温度。结论。我们发现,粘性系数可能与天体物理模型中常用的系数有很大不同。这为我们提供了新见解,可以通过粉尘形成区域的积聚来对碳质粉尘颗粒的生长。
上下文。cometary子流线小径存在于彗星附近,形成了星际尘埃云的细胞结构。这些步道主要由最大的彗星颗粒组成(大小约为0.1 mm – 1 cm),它们以低速弹出,并保持非常接近彗星轨道,以围绕太阳的几次旋转。在1970年代,向内部太阳系推出了两个Helios航天器。航天器配备了原位灰尘传感器,该传感器第一次测量了内部太阳系中星际尘埃的分布。最近,当重新分析HELIOS数据时,发现了七个影响的聚类,由Helios在非常狭窄的空间区域中检测到,真正的异常角度为135±1°,作者认为这是潜在的cometary Trail颗粒。但是,当时无法进一步研究该假设。目标。我们在Helios Dust Data中重新分析了这些候选彗星径向粒子,以调查某些或全部确实起源于彗星步道的可能性,并且我们限制了它们的源彗星。方法。空间模型中用于探索的星际探索(IMEX)尘埃流是一种新的且最近发布的通用模型,用于内部太阳系中的彗星气星流。我们使用IMEX研究Helios制作的彗星径的遍历。结果。在太阳周围的十革命中,Helios航天器与13条彗星小径相交。在大多数遍历中,预测的灰尘频量非常低。结论。在Helios检测到候选粉尘颗粒的狭窄空间区域中,航天器反复穿越45p/Honda-Mrkos-Pajdušáková彗星的步道,并具有72p/Denning-fujikawa,具有相对较高的预测粉尘。对检测时间和粒子冲击方向的分析表明,四个检测到的粒子与这两个彗星的来源兼容。通过组合测量和模拟,我们在这些小径中发现了尘埃空间密度,约为10-8 –10-7 m -3。在较狭窄的空间区域中,径向遍历的聚类构成了Helios数据中潜在的彗星径向颗粒的识别。基于航天器的尘埃分析仪可以将其追溯到其源体的现场检测和分析,为对彗星和小行星的远程组成分析提供了一个新的机会,而无需将航天器吹入甚至降落在这些天体上。这为命运 +(例如,与Phaethon Flyby and Dust Science的空间技术的示范和实验),Europa Clipper以及星际映射和加速探针提供了新的科学机会。
根据阿尔特弥斯计划,NASA 计划重返月球表面,这次是长期停留。阿波罗任务认为尘埃是月球表面作业面临的主要挑战。这包括从一点到另一点的旅行。人们一直在努力开发防止尘埃进入设备、使设备更耐尘和改善除尘效果的技术。然而,长时间在尘埃环境中有效运行仍然是一个悬而未决的问题。在这里,我们探讨了使用缆车、缆车和高空滑索在尘埃之上进行设备和材料转移以及人员远足。讨论了优缺点、潜在架构、推进和材料。还介绍了融入正在进行的阿尔特弥斯计划的步骤。