获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。