石榴在人类历史上占有重要地位,是最古老的栽培农产品之一。众所周知,石榴的原产地是地中海、西亚和伊朗,如今在美国(加利福尼亚和亚利桑那)、阿根廷、中国、阿富汗、印度、阿拉伯、智利和墨西哥北部都有种植。1、2 石榴是石榴科中最重要的植物。石榴的名称来源于 Malum granatum,在拉丁语中意为“颗粒状的苹果”。1 石榴有多个多刺的枝条,叶子是椭圆形的;可食用的果实是一种浆果,由白色或红色单花的子房产生,里面有种子和果肉。3 石榴的 50% 由可食用部分组成,50% 由果皮组成(Fawole 和 Opara)。4
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
光活性过渡金属复合物是结合高光稳定性和长发光寿命的发光体。但是,水溶液中的光学性能降低限制了它们在生物系统中的使用。在这里,研究了在聚合物纳米颗粒(NPS)中串联的二胺复合物和近红外复合物(NIR)发射Cy5染料的物理化学和光学物理特性以及生物成像的兼容性。通过改变聚合物,尺寸为20至70 nm,并封装为≤40wt的RE复合物,即每NP的≈11000re络合物。封装后,RE络合物的光致发光(PL)量子产率增加了8倍至≈50%(乙腈的6-7%),导致PL亮度高达10 8 m -1 cm -1,PL寿命为3-4μs。复杂激发后,CY5的串联可产生非常明亮的NIR发射。非常紧密的转到Cy5供体 - 受体距离降低至≤2nm,而货物官方超过90%则由PL寿命测量结果确定。Re-Cy5 NPS进入可见和NIR中的高对比度PL成像,进入哺乳动物细胞。这种详细的表征可以更好地理解过渡金属型FRET NP的光物理特性,并为迈出了新的一类新型明亮发光NP探针的效果设计的重要步骤。
10/01/2021-现任SCU研究,MCW的Stephen Denton,在社会上发表的海报10/2021-12/2021 Tina Lam,SCU董事会成员,MCW 10/2021-现任Jeffrey Liu,SCU董事会成员,MCW 01/2022-2022-22/2022-12/2022 MAIE ZAGOUL,SCU ZAGUL,SCU,SCU,SCU,SCU,SCU,10/01。凯恩斯(Cairns),SCU研究,MCW,海报在社会上发表于01/2023-04/2024 MUTSA CHIROMO,SCU总裁MCW 01/2023-04/2024 Alynah Adams,SCU董事会成员,MCW 01/2023-01/2023-04/2024/2024 sophia sophia sosscu Board,MCW 04/2024/2024/2024/2024/ Pantoja, SCU Board Member, MCW 01/2023 - Present Stephen Gebbia, SCU Board Member, MCW 04/2023 - 04/2024 Kristin Seidler, SCU Provider Guidance Workgroup, MCW 04/2023 - 04/2024 Nitin Somasundaram, SCU Provider Guidance Workgroup, MCW 08/2023 - Present Jordan Eng, SCU MCW 08/2023总裁 - 萨拉·阿米尼(Sara Amini),SCU董事会成员,MCW 08/2023-现任SCU董事会成员MCW 08/2023 -MCW SCU董事会成员,MCW
角度和极化选择性自发发射在染料掺杂的金属/绝缘体/金属纳米腔中Vincenzo Caligiuri*,Giulia Biffi,Milan Palei,Beatriz Martin-Garcia,Renuka devi Pothuraju,YannBretonnièredecionalverional verional ver v. v. v. v. v. v. v. V. V. V. V. V. Caligiuri,G。Biffi,M。Palei博士,B。Martin-Garcia博士,P.R。doi,意大利理工学院R. Krahne博士,通过Morego 30,16163 Italy Genoa,意大利电子邮件:roman.krahne@iit.it; vincenzo.caligiuri@iit.it V. Caligiuri物理系,卡拉布里亚大学,87036年,意大利G. Biffi Rende,R。D。Pothuraju,R。D。Pothuraju,化学和工业化学系,Genoa,Genoa,viaecaneso,Dodecaneso,31146,ITALOA,ITALY ECOL Y. BRETONIN,BRITENON,BRETENON。 Superieure de Lyon, CNRS UMR 5182, University Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France Keywords: Epsilon-Near-Zero, Polarized Spontaneous Emission, Push-Pull Chromanophores, Metal-insulator-Metal Cavities Directing and Polarizing the Emission of a Fluorophore is of FundaMental Importance in the
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
通过将聚合物掺入LDH纳米粒子中,可以获得具有独特功能和结构的聚合物基纳米复合膜,其可以通过逐层自组装方法定义为溶液插层、熔融插层或乳液插层(12,13)。在药物输送领域,无机材料的使用可能会产生有害的副产物并影响环境。相反,使用天然物质和绿色合成方法可以最大限度地减少能源消耗和污染物的产生,并改善人类健康(14,15)。因此,结构上由几种有机大分子(如碳水化合物、蛋白质、核酸和脂肪酸)组成的天然物质(如蜂蜜)引起了人们的兴趣(16,17)。天然基纳米复合材料通常被认为是无毒和生物相容性的,具有高化学稳定性和pH依赖性的溶解度(12,18)。它们通过廉价的工艺制备而成,并且可以轻松修改为具有独特的物理化学性质,以用于环境科学、催化、生物传感、化妆品和医学等不同应用(10、19)。尽管转换为生物来源可能会解决许多重大问题,但活性成分在储存过程中可能通过水解或氧化而快速降解,并且由于释放曲线受限导致治疗反应不足,因此凸显了使用生物来源的必要性
有机染料在人们的生活中随处可见。尽管有机染料在我们的生活中无处不在,但它们在生理条件下本质上是光降解和反应性的。[1] 自十九世纪以来,人们就已发现[2] 染料的不稳定性部分源于激发态寿命期间发生的不同光激活物理和化学过程,其中包括通过系统间窜越形成暗态、[3,4] 分子构象变化、[5] 以及由于明暗态之间随机偏移而引起的光诱导充电和触发暂时性扰动(闪烁)。[6–8] 更重要的是,与染料接触的活性氧化物 (ROS) 会诱导不可逆的光致发光 (PL) 消光,称为光漂白或褪色。[9,10] 这些过程大大减少了进行实验的时间窗口,从而限制了生物成像应用和各种条件下的体内监测。例如,绿色荧光蛋白 (GFP) 在光漂白之前提供有限数量的吸收/发射循环,发射光子数在 10 4 到 10 5 之间。尽管如此,GFP 仍然非常受欢迎,作为荧光探针,尽管它们的使用在典型的成像条件下仅限于几分钟。[11,12]
本研究涉及通过反流方法的Tulsi Honey掺杂氧化葡萄岩(TH/CEO 2)的便利合成。使用UV-可见,FTIR,TEM和XRD技术对样品进行表征。使用TH/CEO 2在RH-B(Rhodamine b)染料上实施了光催化研究,并在80分钟后显示了95%的降解,在反应的一阶动力学速率和半寿命(t 1/2)周期为42.58分钟。使用镍网状电极在1 M KCL溶液中分析Th掺杂的CEO 2的氧化还原行为,表明电化学特性(例如电容(CSP),扩散系数(D)和可逆性(ER))的氧化还原行为显着改善。使用环状伏安法检测制备的纳米复合材料来检测Hg +2和Pb +2离子的传感器活性。在这里,Hg +2和Pb +2传感器使用准备好的材料展示了更好的传感特性。生成的TH/CEO 2使用2,2-二苯基丙烯酰氢羟基(DPPH)自由基表现出88%的自由基清除活性,IC50值为339.449 mg/ml。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年12月27日发布。 https://doi.org/10.1101/2024.12.26.630335 doi:Biorxiv Preprint