我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
摘要 本文介绍了业力机制,这是一种在无限时间内在竞争代理之间重复分配稀缺资源的新方法。示例包括决定在高峰需求期间为哪些叫车行程请求提供服务、在交叉路口或车道合并时授予通行权或将互联网内容纳入受监管的快速通道。我们研究了这些问题的简化但富有洞察力的表述,其中在每个时刻,从大量人群中随机匹配两个代理来竞争资源。业力机制的直观解释是“如果我现在屈服,我将在未来得到回报。”代理在类似拍卖的环境中竞争,他们竞标业力单位,业力直接在他们之间流通并在系统中自成一体。我们证明,这使得一个自利的代理社会能够实现高水平的效率,而无需诉诸(可能有问题的)资源货币定价。我们将业力机制建模为动态人口博弈,并保证存在一个平稳纳什均衡。然后,我们用数字方式分析了稳定纳什均衡下的表现。对于同质代理的情况,我们比较了不同的机制设计选择,表明当代理具有未来意识时,可以实现高效且事后公平的分配。最后,我们测试了针对代理异质性的稳健性,并通过业力重新分配提出了一些观察到的现象的补救措施。
结论:调查结果表明,动态定价提供了重要的好处,例如收入优化,增强的竞争力和改善的库存管理。必须解决与所感知的公平,道德考虑和技术要求有关的挑战。该研究揭示了动态定价对高价值客户的假定影响,强调需要透明且公平的定价策略来维持其信任和忠诚度。这项研究强调了通过道德数据使用和连续的技术适应来解决这些挑战的重要性,以有效地优化定价策略。该研究对动态定价的战略意义提供了全面的理解,为学术界和实践提供了宝贵的见解。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
1。背景1 1.1。肯尼亚的沟通局法律和监管框架1 1.2。关键职责2 1.3。频谱管理职责2 1.4。电信设备类型批准2 1.5。国际方法对频谱管理的重要性3 1.6。将当局的任务应用于电视白色空间4 2。频谱共享TVWS应用程序的机会5 2.1。电视白空间的定义5 2.2。白空间设备操作的授权6 2.3。与电视白色空间相关的风险7 2.4。TVWS 8 2.5的可能许可模型。采用了TVWS的许可模型8 3。使用电视白色空间10 3.1的框架。简介和概述10 3.2。TVWS框架的关键规定11 3.3。主要参考标准11 3.4。地理位置数据库的资格12 3.5。主人和客户端WSD 13 3.6。设备参数13 3.7。操作参数13 3.8。通道使用参数13 3.9。WSD和GeoLocation数据库之间的参数交换14 3.10。干扰管理15 3.11。调整最大发射功率15 3.12。停止提供地理位置数据库服务的要求15 3.13。符合参数的传输15 4。电视白空间试验18 4.1。引言18 4.2。审判目标19 4.3。试验时间表19 4.4。地理位置数据库验证20 4.5。白空间审判授权21 4.6。试验期间的操作员,数据库和设备合作伙伴21 4.7。审判风险23 4.8。地理位置数据库服务模型23 4.9。将数据从权限转移到地理位置数据库24 4.10。设备的地理位置24 4.11。在WSD和GeoLocation数据库之间交换参数24 4.12。干扰管理24 4.13。TVWS试验结果的目标和摘要24
抽象有机物在土壤中的积累被理解为矿物相关(分解,微生物衍生的)有机物与自由颗粒(较少分解的植物衍生)有机物之间的动态。然而,从区域到全球尺度,主要土壤有机碳(SOC)部分的模式和驱动因素尚不清楚,并且与土壤类型之间的子宫遗传学变异保持不佳。在这里,我们将与淤泥和粘土大小的颗粒(S + C),稳定的聚集体(>63μm,SA)和颗粒有机物(POM)相关的SOC与沿着地理气候梯度采样的各种草地表土与颗粒有机物(POM)分开。两种矿物相关的部分(S + C&SA)对SOC的相对贡献在整个梯度中差异很大,而POM从来都不是主要的SOC分数。稳定的骨料(>63μm)在富含碳 - 富含碳的土壤中成为主要的SOC分数。稳定聚集体中碳的分解程度(>63μm)始终在S + C和POM级分之间,并且没有沿研究梯度变化。相比之下,与S + C分数相关的碳在富含碳 - 贫民土壤中的微生物分解较少。S + C部分中SOC的量与Pedogenic氧化物的含量和质地呈正相关,而与稳定聚集体(>63μM)相关的SOC量与Pedogenic氧化物含量呈正相关,并与温度负相关。我们提出了我们发现的概念摘要,该概念将稳定骨料(>63μm)与其他主要SOC馏分的作用整合在一起,并说明了它们在(土壤)环境梯度之间的重要性变化。
dynoncertified.com › 文献 › D... PDF 2020 年 7 月 12 日 — 2020 年 7 月 12 日飞机• 无与伦比的控制人体工程学:SkyView HDX 扩展了SkyView 将完整物理控制与触摸屏相结合的理念
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
