1值得注意的是,这种关联在高时间分辨率的神经影像模式(例如脑电图和梅格)中可能最强。最近的一项研究发现了使用fMRI研究神经复杂性与迷幻之间的关系时的矛盾结果(McCulloch等,2023)。
胚胎发生会整合形态发生 - 协调的细胞运动 - 具有形态学模式和细胞差异。虽然在很大程度上进行了独立研究,但形态发生和模式通常在早期胚胎中同时展开。然而,由于大多数模式形成模型都假设静态组织,细胞运动的影响仍不清楚。我们通过在动态组织中开发一个数学框架来解决这一差距,从而重新设计了细胞参考框架中的对流反应扩散模型,这是信号解释和命运决策最自然的。该框架(i)阐明了形态发生如何介导形态的传输和分隔:多细胞吸引力增强了细胞 - 细胞扩散转运,而驱虫剂则充当障碍,影响细胞命运诱导和分支。(ii)它正式化了动态组织中的细胞 - 细胞信号传导范围,解除形态发生运动并识别哪些细胞可以传达。(iii)它提供了两个非二维数字(通常与p的数字不同),以评估形态上的何时何地与构图相关。(iv)它阐明了细胞密度动力学在图案中的生成作用。我们将此框架应用于经典的图案模型,形态发生基序和鸟类胃胃数据。广义,我们的工作提供了一种定量的观点,可以使自然和合成胚胎中的动态组织合理化。
在DNA模板上制备的银纳米线的最新研究集中在两个基本应用上:纳米级电路和传感器。尽管具有广泛的潜力,但尚不清楚DNA-纳米线的形成动力学。在这里,我们提出了一个实验证明,表明在单分子水平下通过化学还原在单分子水平下直径为2.2+0.4 nm的银纳米线形成。我们使用光学镊子与微富集化学结合使用了AG⁺-DNA复合物和Ag-DNA复合物的形成期间的平衡和扰动动力学实验,以测量力光谱和Ag-DNA复合物。添加Agno 3导致2分钟内的力增加5.5-7.5 pn,表明Ag +紧凑了DNA结构。相比之下,添加氢验导致力减少4-5 pn。形态表征证实了由银原子形成的致密结构,桥接了DNA链,并在金属化之前和之后揭示了构象差异。我们使用粗粒的双链DNA(DSDNA)模型将实验数据与Brownian动力学模拟进行了比较,该模型提供了对力对持久长度的依赖性的见解。
Etienne Dantan,Maxime Pailler,StéphanieRagot,Elise Gand,Jean-Noel Trochu等。肾功能下降和2型糖尿病患者的肾功能下降和心力衰竭住院:前瞻性Surodia-Surdia-Colort的动态预测。糖尿病研究与临床实践,2022,194,pp.110152。10.1016/j.diabres.2022.110152。hal-03904439
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。
我们介绍了动态上下文Markov Deci-Sion过程(DCMDPS),这是一个新颖的增强学习框架,用于与历史有关的环境,该框架概括了上下文的MDP框架来处理非Markov环境,其中上下文随时间而变化。我们考虑了模型的特殊情况,重点关注dcmdps,这通过利用粒子函数来确定上下文转换,从而破坏了对历史长度的指数性。这种特殊的结构使我们能够得出一种上层封闭的样式算法,我们为此建立了遗憾的界限。以我们的口感结果的启发,我们引入了一种基于模型的实用算法,用于在潜在空间中计划,并在历史依赖的特征上使用乐观态度。我们在推荐任务(使用Movielens数据)上演示了我们方法的效率,在该任务中,用户行为动态响应建议而演变。
摘要 - 在动态图上检测到的动态检测旨在与图表中观察到的标准模式及其时间信息相比,识别表现出异常行为的实体。由于其在财务,网络安全和社交网络等各个领域的应用,它引起了越来越多的关注。但是,现有方法面临两个重大挑战:(1)动态结构捕获挑战:如何有效地使用复杂的时间信息捕获图形结构,以及(2)负面采样挑战:如何为无人看管的学习构建高质量的负样本。为了应对这些挑战,我们提出了对动态图(Gady)的生成异常检测。gady是一个连续的动态图模型,可以捕获细粒的时间信息以应对动态结构捕获挑战,从而克服了现有离散方法的局限性。指定,我们建议使用优先级的时间聚集和状态特征来增强动态图编码器以进行异常检测。在第二个挑战中,我们引入了生成对抗网络的新颖使用来产生负面子图。此外,在发电机训练目标中引入了辅助损失功能,以确保同时生成的样品的多样性和质量。广泛的实验表明,我们提出的Gady在三个现实世界数据集上的表现明显优于现状方法。补充实验进一步验证了我们的模型设计的有效性和每个组件的必要性。
焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
用于解决复杂物理问题的机器学习(ML)技术的整合越来越被认为是加快模拟的有前途的途径。但是,评估ML衍生的物理模型在工业环境中的采用构成了重大挑战。本竞赛旨在促进创新的ML方法来应对身体挑战,利用我们最近引入的统一评估框架,称为学习工业物理模拟(LIPS)。建立在2023年11月至2024年3月1日举行的初步版本上,该迭代以良好的物理应用为基础的任务为基础:使用我们建议的Airfrans数据集,翼型设计模拟。竞争基于各种标准评估解决方案,包括ML准确性,计算效率,分布外部性能和遵守物理原理。值得注意的是,这项竞争代表了探索ML驱动的替代方法的开创性努力,旨在优化物理模拟中计算效率和辅助性之间的权衡。托管在Codabench平台上,比赛为所有参与解决方案提供了在线培训和评估。
在本文中,我们提出了一种创新的动态分类算法,旨在实现零遗漏的检测和最小误报的观察。使用监督模型将数据分配到N当量的训练子集和n个预测子集中,然后是n个单独的预测模型的独立预测。这使每个预测模型都可以在较小的数据范围内运行,从而提高了整体准确性。此外,该算法利用通过监督学习生成的数据来进一步完善预测结果,滤除未满足准确性要求的预测,而无需引入其他模型。实验性调查表明,当数据分配误差最小时,动态分类算法实现了出色的性能,而零遗漏的检测和最小的假阳性,则显着超过了现有的模型结合体。即使在分类错误较大的情况下,算法仍然可以与最新模型相提并论。这项研究的关键创新包括自我监督的分类学习,小范围子集预测的使用以及直接拒绝不合格的预测。虽然当前的算法在自动参数调整和分类模型效率方面仍然有改进的空间,但它在多个数据集中表现出出色的性能。未来的研究将着重于优化分类组件,以进一步增强算法的鲁棒性和适应性。
