关键词:FTI、OLM、FDR、FDAU、HUMS、ODR、固态存储器、结构和频谱分析 简介 传统上,飞机数据监控系统 (HUMS、FDAU、ODR 等) 都是根据当时认为需要的具体测量和分析工具为每种飞机类型量身定制的。在大多数情况下,规格要么是基本点(让潜在供应商对实际需要做出有计划的猜测),要么过于具体,以至于系统设计几乎没有灵活性。最终结果通常以“黑匣子”系统结束,该系统可能只会在具有定制硬件和软件的特定飞机类型上使用。硬件和软件的鉴定成本高昂,灵活性低,维护成本高,这通常导致投资回报率低。系统调试和鉴定(包括 CAA 和 FAA 批准)所花费的时间意味着许多系统在投入使用之前就已经过时了。COTS 方法越来越多的 HUMS 和其他 DAU 用户正在寻求商用现货 (COTS) 解决方案,以便利用新的采集、处理和数据存储技术、现有的传感器/总线接口和数据分发标准以及大量免费提供的高质量数学、统计和结构分析软件在航空航天/工业/商业市场上。与定制系统设计相比,使用 COTS 系统具有一些显着的优势 –
5.3.2.结果 ...................................................................................................................... 68
摘要:数字景观中的身份验证是由于不断发展的网络威胁而面临的持续挑战。传统的基于文本的密码,这些密码容易受到各种攻击,因此需要创新解决方案来加强用户系统。本文介绍了Rosecliff算法,该算法是一种双重身份验证机制,旨在提高针对复杂的黑客尝试的弹性并不断发展存储的密码。该研究探讨了加密技术,包括对称,不对称和混合加密,从而解决了量子计算机构成的新兴威胁。Rosecliff算法将动态介绍给密码中,该密码允许在多个平台上进行更安全的通信。评估算法的强大攻击,例如蛮力,字典攻击,中间攻击和基于机器学习的攻击。Rosecliff算法通过其动态密码的一代和加密方法,证明了针对这些威胁有效的。可用性评估包括实施和管理阶段,专注于无缝集成以及用户体验,强调清晰度和满意度。限制被承认,从而敦促对加密技术的弹性,鲁棒性的鲁棒性以及对新兴技术的整合的进一步研究。总而言之,Rosecliff算法是一种有希望的解决方案,从而有效地应对现代身份验证挑战的复杂性,并为未来的数字安全研究和增强功能奠定了基础。
海上直升机经常部署在现代作战舰船上。在海上从舰船上回收和发射直升机被认为是飞行员可能遇到的最苛刻和最危险的环境之一[1]。舰船的运动,加上舰船上层建筑上方和周围的气流(称为舰船尾流),增加了飞行员的整体工作负荷[2]。为了确保在直升机舰船动态接口 (HSDI) 内操作的飞行员和机组人员的安全,对舰船和直升机在海上进行了一系列发射和回收测试,测试风力大小和风向不同,以确定舰船-直升机操作极限 (SHOL)。图 1 显示了 SHOL 的一个示例,指示了在甲板上风力条件(大小和方向)组合超出该边界时直升机降落不安全的情况。通过使用建模和仿真 (M&S),可以为给定的船舶重现海上条件,并用于分析飞机运行时的气流以及模拟环境中的实时驾驶飞行 [3]。本文介绍了 HSDI 中飞行模拟所需的各个元素的开发,以及在海上 SHOL 测试之前为检查气流而开发的室内工具。
mit.edu › handle › 36829869-MIT PDF 作者:XD He · 1996 · 被引用次数:100 — 作者:XD He · 1996 被引用次数:100 tary:室内空气温度由压缩机容量控制调节,而... 4.3.2 数字实现和实验结果。
EPS 可使您价格适中的 Model 2020 ProBalancer 分析仪的功能提升到比其价格高出数千美元的分析仪的功能范围。EPS 的自动跟踪和平衡解决方案可消除繁琐的计算、手动图表更正和手动计算错误;帮助您快速获得准确的平衡解决方案,并通过加快数据采集过程最大限度地减少燃油消耗和飞机运行时间。EPS 固有的学习算法会获取每次运行期间获取的数据,从中学习,并将这些知识应用于每次后续运行,从而改进解决方案过程并不断缩短达到可接受振动水平所需的时间。EPS 可与 ACES Systems 的 Model 2020 ProBalancer 分析仪一起使用。有三种 EPS 版本可供选择,可根据每个应用的独特平衡需求进行量身定制:主旋翼、尾旋翼和螺旋桨。
摘要 — 双边遥控操作为人形机器人提供了人类的规划智能,同时使人类能够感受到机器人的感受。它有可能将具有物理能力的人形机器人转变为动态智能的机器人。然而,由于涉及复杂的动力学,动态双边运动遥控操作仍然是一个挑战。这项工作介绍了我们通过身体倾斜的轮式人形机器人运动遥控概念应对这一挑战的初步步骤。具体来说,我们开发了一种具有力反馈能力的全身人机界面 (HMI),并设计了一个力反馈映射和两个遥控映射,将人体倾斜映射到机器人的速度或加速度。我们比较了这两种映射,并通过实验研究了力反馈的效果,其中七个人类受试者用 HMI 遥控一个模拟机器人执行动态目标跟踪任务。实验结果表明,所有受试者在练习后都完成了两种映射的任务,力反馈提高了他们的表现。然而,受试者表现出两种不同的远程操作风格,它们从力反馈中获益的方式也不同。此外,力反馈影响了受试者对远程操作映射的偏好,尽管大多数受试者在速度映射方面表现更好。
繁荣的铁路是推动整个英国繁荣的关键工具。作为一种低碳形式的运输方式,成功的铁路也可以充当绿色增长的引擎,有助于实现净零目标和空气质量目标。从宣布威廉姆斯评论的宣布近五年之后,在大流行使该行业的负责人之后,延迟的改革破坏了铁路发挥其全部潜力的能力。关键选择面对铁路,包括我们如何将更多的乘客带回,使铁路对其他模式有吸引力,恢复了数亿英镑的收入损失,并最终建立了该行业,以获得长期成功。广泛认识到铁路的表现不应有,但挑战的规模常常被低估。重新回到增长的轨道涉及正确诊断铁路面临的问题,对公共与私人的一方面意识形态辩论,并优先考虑有效的方法。如果火车公司之间的竞争是由铁路重新活化的公私合作伙伴关系来利用的,它将为乘客和纳税人带来更好的成果。
使用这两种轴承技术的早期Stirling设计成功地证明了实验室的性能和寿命,并有可能使DRP生成器持续至少17年,这通常是长期过境时间到外行星及其月亮所需的时间。虽然尚未在太空中飞行过Stirl转换器,但Stirling Cryocoolers与类似的支撑技术配对,在许多太空任务(包括16年的Rhessi Solar Flare天文台)上非常成功地使用了。AMSC和SunPower已为NASA Glenn提供了原型转换器,其中一些已完成了超过4,000个小时的操作和测试。单位将进行环境测试,以证明对太空任务期间预期的恶劣条件的鲁棒性。
摘要 癌症是一种多因素、突发性疾病,是由遗传、环境和行为因素之间复杂的相互作用引起的。压力作为一种慢性生物和心理现象,长期以来一直与癌症的发展和进展有关。本文利用动态突发系统手性 (CODES) 框架,假设压力在混沌(熵)和秩序(体内平衡)之间的动态平衡中起着不稳定作用。通过应用 CODES,我们模拟了慢性压力如何破坏细胞和系统适应机制,导致癌症作为一种适应不良的结果出现。这种方法重新定义了压力与癌症之间的关系,为预防、治疗和全身健康提供了新的见解。 简介 当严格调控的细胞生长和死亡过程被破坏时,癌症就会出现,从而使恶性细胞不受控制地增殖。急性和慢性压力都与癌症风险增加、预后较差和肿瘤生长加速有关。传统研究主要关注以下途径: