摘要 - 本文介绍了具有交通标志检测和识别功能的自动电动汽车(EV)的设计和实施。该系统是围绕Raspberry Pi微控制器构建的,该覆盆子Pi微控制器控制车辆的操作,处理传感器数据并管理电源分配。关键组件包括用于推进的直流电动机,用于充电的发电机,用于交通符号检测的相机以及用于避免障碍物的超声波传感器。主电池为车辆提供动力,并通过发电机为辅助电池充电。当主电池的电压下降以下时,系统会自动切换以使用辅助电池进行推进,并将发电机充电切换为主电池。通过在Raspberry Pi上运行的图像处理算法来实现流量标志检测,该算法分析了相机捕获的图像以识别和解释流量标志。该系统还结合了一个超声波传感器,以检测障碍并确保安全导航。提议的系统通过利用自动充电功能和高级传感器技术来提高安全性和性能关键词,为自动驾驶汽车提供了可持续和高效的解决方案 -
关键词:混合自行车,直流电动机(直流电动机),太阳能电池板,油门1.引入太阳能操作的混合自行车提出了可持续能源和有效运输的想法。这是这种创新骑自行车方法的一些主要特征。太阳能操作的混合自行车使用安装在框架上的光伏(PV)面板。太阳能电池板用于将太阳能转换为电池,该电能存储在电池中。太阳能减少了充电时间,并提供了环保和成本效益的推进手段。此外,使用太阳能,发电机还用于给电池充电。dynamo在踏板时会产生电力。存储在电池中的能量用于为齿轮直流电(DC)电动机供电,后者旋转后轮。太阳能操作的混合自行车还有助于减少由于常规汽油和柴油发动机而引起的污染。因此,太阳能操作的混合动力车是学校和大学生,办公室员工,老年人等的一个很好的选择。在该项目中,作为论文工作的一部分,太阳能辅助自行车在自行车的后轴上安装了DC集线器电动机,功率为250W,行进速度约为17-28 km/h。它配备了一对铅酸电池,每个铅酸电池是8 AH,一个可容量为50瓦的光伏太阳能电池板,微控制器,加速器和24V的电动机。贫穷
在本文中,我们研究了湍流环境下的对称性破缺。我们用两个例子展示了从对称状态到对称性破缺状态的转变:(1)随着流体层厚度的变化,二维流动向三维流动的转变;(2)随着磁雷诺数的变化,薄层流动中的发电机不稳定性。我们表明,这些例子具有相似的临界指数,但与平均场预测不同。临界行为可以与波动的乘法性质相关联,并且可以使用随机界面的统计特性结果在一定限度内进行预测。我们的结果表明,可能存在一类受乘法噪声控制的新型非平衡相变。
在这项工作中,我们研究了在湍流环境的存在下对称破裂。使用两个示例证明了从对称状态向对称状态的过渡:(i)随着流体层的厚度的变化,二维流量向三维流量的过渡,并且(ii)(ii)(ii)薄层流量中的磁性不稳定,因为磁性雷诺数是磁性雷诺数的变化。我们表明,这些示例具有类似的关键指数,这些指数与均值的预测相差。临界行为可以与闪光的乘法性质有关,并且可以使用随机接口的统计特性的结果在某些限制中预测。我们的结果表明存在由乘法噪声控制的新类平衡相变的新类别的可能性。
机械部萨尔技术工程研究所,印度艾哈迈达巴德摘要:由于全球的燃油价格日益上涨,因此需要寻找一种替代品来保护这些自然资源。因此,太阳能自行车是一种电动车辆,通过利用太阳能为电池充电,从而提供所需的电压以运行电动机来提供替代方案。由于印度拥有九个月的阳光阳光,因此太阳能自行车的概念在印度非常友好。混合自行车结合了太阳能的使用以及穿过踏板的发电机,以充电电池以运行自行车。因此,太阳能混合自行车可以成为燃料汽车的非常重要的替代品,因此其制造是必不可少的。
由于每个隧道部分的等级,机车都具有不同的重量(较陡的等级需要更加拖动的努力,因此需要较重的机车)。运输机车的电源源是电动的(电池供电)。通过使用日本的固态控制系统,该设备可以用于再生制动。机车充当发电机,每当它放慢速度时,就会充电自己的电池,从而延长电荷之间的时间。机车的标准包括2组电池和一个高效率电池充电器。滚动库存解决方案适用于经过测试和测试的链路和引脚系统,以用于汽车连接以及用于气动制动器的快速释放耦合。轮毂是铸钢的钢钢,可在延性与寿命之间均衡。
摘要3D混凝土印刷(3DCP)由于增强生产力和可持续性的利益而引起了显着关注。然而,现有的3DCP技术在将常规的钢筋增强与印刷混凝土结构整合在一起时面临着自动化和实用性的挑战。本研究提出了一个自动机器人系统,并加上建筑信息建模(BIM),以应对挑战。dynamo脚本用于生成打印路径,该算法进一步优化了用于结合钢筋增强的算法。采用了深度学习模型来识别具有较高纵横比的钢筋。钢筋识别的平均准确性为92.5%,位置误差在2 mm之内。开发了用于多个设备通信的集中控制系统,包括相机,机器人臂和抓手。最后,进行了实时演示,代表了自动化机器人系统的第一个实际演示,以将钢筋加固与使用BIM生成的数据在物理世界中的印刷结构相结合。
1 Alpine Ecology Laboratory,CNRS,Grenoble Alpes University,Savoie Mont Blanc University,Grenoble,法国; 2 FRB-CESAB,法国蒙彼利埃; 3菲尔 - 促进环境行动和学习,法国皮尔鲁斯; 4新西兰尼尔森的Cawthron研究所; 5 Dynamo,图卢兹大学,INPT,Inraev,Toulouse,法国; 6法国Besançon的Franche-Comté大学社会学和人类学实验室; 7个福斯和社会,Cirad,蒙彼利埃大学,法国蒙彼利埃; 8德国吕尼堡的吕纳堡可持续发展学院; 9英国布莱顿苏塞克斯大学发展研究所的名誉研究所; 10事项,英国肯特语对话; 11欧洲重新野生,荷兰尼杰梅根; 12 Istituto di Ecologia Applied,意大利罗马; 13 Flow-Wing Sasu,Montferrier Sur Lez,法国和14 Agroecologie,Agrosup Dijon,CNRS,CNRS,INRAE,University Burgundy,University Bourgogne Franche-Comté,Dijon,Dijon,France