TRON能量损失光谱被彻底考虑。研究表明,在底部电极中的氧气浓度较高(约14.2±0.1 at。%)与顶部电极相比(约11.4±0.5 at。%)。以下平均化学计量公式为锡0。52 o 0。20上衣和锡0。54 O 0。 26底部和底部电极的底部。 由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。 这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。 我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。 EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。 测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。54 O 0。26底部和底部电极的底部。由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。