欢迎进入第十二版的数学和图像分析(MIA)会议系列!该会议建立在2000年成功的MIA会议创业的基础上,该会议已两年一度地在巴黎的IHP举办。自2014年以来,德国研究人员就加入了组织会议,并决定在巴黎和柏林之间进行更改。科学计划包括在应用数学研究(PDE,统计,反问题,优化,几何建模,最佳运输等)之间的界面上受邀的插入。和New Develo P.M.成像科学,机器学习和高维数据处理的各种主题,重新与主题有关,包括恢复,构造感应,自然图像建模和神经模拟。
我们对触觉互动的科学理解仍在发展,这既是因为您感到非常取决于您的移动方式,又是因为工程传感器,执行器和算法通常都在努力匹配人类能力。因此,很少有计算机和机器界面为人类操作员提供高限度触摸反馈,或仔细分析在交互期间产生的物理信号,从而限制了它们的可用性。触摸感的关键作用也使人们受到人们试图创建自主机器人的欣赏,这些机器人可以在非结构化的环境中能够胜任地操纵日常物体并安全与人类互动。我的团队在所有这些相关的方面都工作,旨在增强我们对触觉互动的理解,同时发明有用的人类计算机,人机,人类机器人,机器人和传感系统,以利用触觉感的独特功能。
缩写 A4A 美国航空公司 AMTS 航空维修技师学校 ARC 航空公司报告公司 ARSA 航空维修站协会 BLS 美国劳工统计局 BTS 美国交通统计局 CARES 新冠病毒援助、救济和经济安全 CDC 美国疾病控制与预防中心 COVID-19 2019 冠状病毒病 DHS 美国国土安全部 DOT 美国交通部 EAS 基本航空服务 FAA 美国联邦航空管理局 FBO 固定基地运营商 HHS 美国卫生与公众服务部 NPIAS 国家综合机场系统计划 OEM 原始设备制造商 PFC 乘客设施费 PPP 薪资保护计划 PSP 薪资支持计划 SCASDP 小社区航空服务发展计划 SEC 美国证券交易委员会 SFAR 特殊联邦航空条例 Treasury 美国财政部 TSA 美国运输安全管理局 UAS 无人驾驶飞机系统
11 美国科罗拉多州奥罗拉市科罗拉多大学安舒茨医学院肿瘤内科 12 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心胸部和胃肠道恶性肿瘤分部。13 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心免疫肿瘤学中心。14 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心外科肿瘤学项目。15 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统癌症发病机制实验室 16 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统恶性肿瘤分部。* 通讯作者:danhtai.hoang@anu.edu.au (DTH)、eric.stone@anu.edu.au (EAS) 和 eytan.ruppin@nih.gov (ER)
由于硼原子的共价半径低和SP 2杂交能力,在其他材料中至少存在连接的二十面体的大量多晶型物。其中之一是硼苯,一种令人兴奋的新纳米材料,具有广泛的能量用途。理论和实验研究证明了唯一的二维(2D)材料的存在。唯一的高磁传导率,理论特异性能力和离子传输特性使其成为能源应用中有前途的候选者(EAS)。在这项研究中,首先提到了唯一的唯一的结构,化学和物理特性。因此,就合成方法而言,自上而下和自下而上的技术,例如超高真空(UHV),化学蒸气沉积(CVD),超声量剥落(EXS),分子束外座(MBE)(MBE)和多步热分解(MTD)进行了讨论。最后,提到了它用作高金属离子电池,氢存储(HS),纳米电子应用氢进化反应(HER)的催化剂。
此外,在更复杂的动物中,大脑皮层占整个大脑的更大比例。大脑的另一个明显的外部特征是小脑的相对大小,这对平衡和协调很重要。能够执行复杂行为的动物的小脑比例较大。嗅球也很容易识别,对嗅觉很重要。MMBG 中使用的大脑图像与比较哺乳动物大脑收集网站 (www. brainmuseum.org) 的图像一起显示,该网站收集了来自威斯康星大学、密歇根州立大学和美国国家健康与医学博物馆的大脑图像。因此,可以轻松进行游戏的几个数学扩展。例如,学生可以测量大脑特定结构的大小,或者测量和计算这些结构的绝对和相对体积。
用人工智能(AI)摘要影响了诸如面部验证之类的敏感应用的决策过程,以确保决策的透明度,公平性和责任感是很有趣的。尽管存在可解释的人工智能(XAI)技术来澄清AI的决策,但向人类表达这些决定的解释同样重要。在本文中,我们提出了一种结合计算机和人类视野的方法,以提高解释对面部验证的解释性。特别是我们受到人类感知攻击的启发,以了解机器在面部比较任务中如何感知到面对面的人类语义。我们使用MediaPipe,它提供了一种分割技术,该技术可以识别不同的人类语义式区域,从而实现了机器的感知分析。补充说,我们改编了两种模型不足的算法,以对决策过程提供可解释的见解。
Marc Thill ADianaLüftnerB Cornelia Kolberg-Liedtke C Ute-Susann Albert D Maggie Banys-Paluchowski E Ingo bauerfeind EckpJörgheil Q Jens Huober R Christian Jackisch S Hans-Heinrich Kreipe T David Krug UThorstenKühnvSherkoKümmelWSibylle w Sibylle X Michael Lux Y Nicolai Maass Z,Christoph Mundhenke bulrike nitz o tjoung won park-simon ch e e e n er n er k r n Eas Schneeweiss FFlorianSchützG Hans-Peter Sinn H Christine Solbach I Erich-Franz Solomayer J Elmar Stickeler K Christoph Thomssen L Michael untch Michael untch M Isabell n achim witzel n achimwöckeld volkmar d volkmarMüllern wolfggang nina wolfggang janni ditch ditch janni ditch ditch ditch ditch ditch
CoRob-X 项目开发并展示了多智能体机器人团队探索行星表面的支持技术,重点是难以到达的区域,这些区域需要协作方案才能有效探索复杂环境。探索熔岩管是一个非常具有挑战性的环境,需要一组机器人能够以自主的方式协作,找到通往地下管道系统的路,通过天然入口孔(所谓的天窗)下降,并使用有效载荷仪器探索内部以提供科学数据。为实现这一雄心勃勃的目标而开发的机器人探索系统由三辆具有显著不同技术特性的探测车组成。本文介绍了总体方法,即控制架构、机器人系统和要使用的软件。它还展示了将在现场测试活动中演示的选定任务阶段。此外,还提出了一个陆地采矿用例,展示了如何将开发的自主软件转移到陆地应用程序。
美国国家标准局对水的质量进行的研究始于 1931 年左右,当时由 E. C. Bingham 主持的一个委员会建议做出新的测定。工作断断续续地进行着,直到 1952 年,瑞典、科和戈弗雷 [1] 发表了他们的工作成果,将 20°C 时水的粘度建议值从 1.005 厘泊 (cP) 改为 1.002 cP。1957 年,克斯利指出,之前的所有测量都是通过非常相似的实验进行的,有可能是一个未知的系统误差影响了所有结果。当时,开始了两种不同的绝对测量工作。其中一项实验是测量充满液体的球体扭转振动的周期。另一项实验是测量毛细管上水龙头处的压力。这两个实验再次断断续续地进行着。1959 年,Kearsley 发表了对扭球粘度计的分析 [2]。该项研究的结果发表在相邻的论文 [3] 中。1968 年,我们决定构造一个精确的通道,以避免测量小管柱的半径和半径分布时遇到的一些困难。根据计量部门的 T. R. Young 先生的建议,我们决定采用将两个圆柱形杆压在平板上形成的通道。这一建议促成了这项工作