AMC1 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 60 AMC2 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 AMC3 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 GM1 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM2 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM3 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 62
AMC1 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 60 AMC2 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 AMC3 ACNS.C.PBN.205 RNP 系统批准 .............................................................................. 61 GM1 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM2 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 61 GM3 ACNS.C.PBN.205 RNP 系统批准 ............................................................................. 62
*关键结构:承重结构/元件,其完整性对于维持飞机的整体飞行安全至关重要。本 AMC 采用此定义是因为在考虑不同类别的飞机时,主要结构、次要结构和主要结构元件 (PSE) 的定义存在差异。例如,PSE 是大型飞机的关键结构。
序言 CS-25 修正案 9 生效日期:2010 年 12 月 8 日 以下是受此修正案影响的段落列表。第 1 册 第 B 分部 CS 25.113 更正(编辑) 第 D 分部 CS 25.603 修订(NPA 2009-06) CS 25.795 修订(NPA 2009-07) 更正(编辑) CS 25.813 修订(NPA 2008-04) 第 E 分部 CS 25.981 修订(添加定义) 第 J 分部 CS 25J951 更正(编辑) 第 2 册 第 D 分部 AMC 第 1 号至 25.603 已删除(NPA 2009-06) AMC 第 2 号至 25.603 已删除(NPA 2009-06) AMC 25.795(a)(1) 修订(NPA 2009-07) AMC 25.795(a)(2) 修订版(NPA 2009-07) AMC 25.795(b)(1) 新版(NPA 2009-07) AMC 25.795(b)(2) 新版(NPA 2009-07) AMC 25.795(b)(3) 新版(NPA 2009-07) AMC 25.795(c)(1) 新版(NPA 2009-07) AMC 25.795(c)(2) 新版(NPA 2009-07) AMC 25.795(c)(3) 新版(NPA 2009-07) AMC 25.813(c) 新版(NPA 2008-04) E 分部 AMC 25.981 更正(编辑)子部分 H AMC 25.1711 更正(编辑)
前10名同行评审出版物:Bier,A。和Burkhardt,U。(2022)。射流和涡流期参数化的微物理过程对围栏性质和辐射强迫的影响。地球物理研究杂志:大气,127,E2022JD036677。https://doi.org/10.1029/2022JD036677 Verma,P。,&Burkhardt,U。 (2022)。 cirrus中的缩进形成:cirrus云特性对围栏形成的影响的图标-lem模拟。 大气化学与物理学,22(13),8819–8842。 https://doi.org/10.5194/acp-22-8819-2022 Lee,D.S.,Fahey,D.W.,Skowron,A.,Allen,M.R.,M.R.,Burkhardt,U. (2021)。 全球航空对2010年至2018年人为气候强迫的贡献。 大气环境,244,117834。https://doi.org/10.1016/j.atmosenv.2020.117834 Stevens,B.,Accuistapace,C.,Hansen,A. (2020)。 大型涡流和防暴模型的附加值,用于模拟云和降水。 日本气象学会杂志,98(2),395–435。 https://doi.org/10.2151/jmsj.2020- 021。 Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。 Atmos。 化学。 Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。 Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。https://doi.org/10.1029/2022JD036677 Verma,P。,&Burkhardt,U。(2022)。cirrus中的缩进形成:cirrus云特性对围栏形成的影响的图标-lem模拟。大气化学与物理学,22(13),8819–8842。https://doi.org/10.5194/acp-22-8819-2022 Lee,D.S.,Fahey,D.W.,Skowron,A.,Allen,M.R.,M.R.,Burkhardt,U.(2021)。全球航空对2010年至2018年人为气候强迫的贡献。大气环境,244,117834。https://doi.org/10.1016/j.atmosenv.2020.117834 Stevens,B.,Accuistapace,C.,Hansen,A.(2020)。大型涡流和防暴模型的附加值,用于模拟云和降水。日本气象学会杂志,98(2),395–435。https://doi.org/10.2151/jmsj.2020- 021。 Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。 Atmos。 化学。 Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。 Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。https://doi.org/10.2151/jmsj.2020- 021。Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。Atmos。化学。Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。(2015):缩小图的微物理途径,J。Geophys。(2011)。Q. J. Roy。Q. J. Roy。NPJ气候和大气科学,第1页。 1-7。 https://doi.org/10.1038/s41612-018-0046-46-4Kärcher,B.,U.Burkhardt,U.,Bier,A.,Bock,L。和Ford,I。J.res。,120,7893–7927,https://doi.org/10.1002/2015JD023491/2015JD023491 Burkhardt,U.全球辐射性强迫从围栏卷曲中强迫。自然气候变化,1(1),54-58。https://doi.org/10.1038/nclimate1068Kärcher,B。和U. Burkhardt,2008年:用于通用循环模型的Cirrus云方案。陨石。Soc。,134,1439-1461,https://doi.org/10.1002/qj.301航空气候变化研究启动(ACCRI)的首席作者出版一份关于前进方向的报告,基于对研究差距和不确定性领导作者的审查:G.P. G.P.Brasseur,美国NextGen联合计划和发展办公室联邦航空局(FAA),国家航空航天局(NASA)(NASA),国家海洋与大气管理局(NOAA)(NOAA),2008年。
§ 飞机识别 § 飞行规则 (I/V/Y/Z) Y=I, V Z=V, I § 设备 § 出发机场 § EOBT – 预计飞行时间 § 巡航速度(TAS 或马赫数) § 巡航高度 § 航线 § 目的地机场 § EET – 预计飞行时间 § 备用机场 § 燃油续航能力 § POB(包括尸体) § 应急和生存设备
目录(总体布局) CS-25 大型飞机 序言书 1 – 认证规范 子部分 A – 总则 子部分 B – 飞行 子部分 C – 结构 子部分 D – 设计和建造 子部分 E – 动力装置 子部分 F – 设备 子部分 G – 操作限制和信息 子部分 H – 电气线路互连系统 子部分 J – 辅助动力装置安装 附录 A 附录 C 附录 D 附录 F 附录 H – 持续适航说明 附录 I – 自动起飞推力控制系统 (ATTCS) 附录 J – 应急演示 附录 K – 交互系统和结构附录 L 附录 M – 燃料箱可燃性降低方法附录 N – 燃料箱可燃性暴露手册 2 – 可接受的合规方法 (AMC) 简介 AMC – 子部分 B AMC – 子部分 C AMC – 子部分 D AMC – 子部分 E AMC – 子部分 F AMC – 子部分 G AMC – 子部分 H AMC – 子部分 J AMC – 附录一般 AMC
→ 让申请人能够尽早了解 EASA 对实施 AI/ML 解决方案的可能期望。→ 为 1 级 AI 应用建立基线,并将针对 2 级和 3 级 AI 应用进一步完善。