仅供研究使用。不可用于诊断程序。如需了解当前认证,请访问 thermofisher.com/certifications © 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。DS0511-EN-09-2024
摘要 12 家实验室开展了一项跨实验室练习,使用电子背散射衍射 (EBSD) 测量钛金属样品的平均晶粒尺寸,该样品的平均晶粒尺寸约为 30 µm。参与者被要求遵循拟议的国际标准草案 ISO DIS13067“微束分析 - 电子背散射衍射 - 晶粒尺寸和分布测量”。在提交的初始结果中,12 家实验室中有 4 家报告的等效圆直径值与总体平均值有显著差异。在三种情况下找出了这些差异的原因,对两种情况进行了修正,然后对数据进行了全面的统计处理,以消除剩余的异常值。通过测量等效圆直径计算出的平均晶粒尺寸比使用线性截距测量法计算出的值大约大 10%。结果显示,实验室之间的平均值差异(再现性)比单个实验室进行的几次测量之间的差异(重复性)大得多。等效圆直径测量的可重复性极限比线性截距测量的可重复性极限高出约 80%,这可能是因为校准漂移和垂直于倾斜轴的倾斜校正产生的额外误差仅对前一种方法有影响。讨论了结果差异的来源,并得出结论:选择要包括在平均值计算中的最小晶粒尺寸对报告值的影响最大。选择相对较大的截止尺寸可能会产生最佳一致性,因为最小晶粒可能会产生显著的影响(与其占据的面积不成比例),并且晶粒的数量和大小最有可能随着所选的步长、数据质量和/或索引不良点的处理而变化。
DEPC (MN) 037 高温压缩试件的微观结构映射 - 通过电子背散射衍射进行晶粒尺寸计量摘要电子背散射衍射 (EBSD) 越来越多地被用于通过映射试件截面的晶体学取向来表征许多工程材料的微观结构。这些晶体学信息传统上用于揭示详细的相和纹理信息,但它也可以提供有关晶粒尺寸和相关参数的大量信息。这些参数有时被视为直接光学技术的简单测量值。然而,EBSD 的自动化特性意味着它可以提供更多信息,而不受个别操作员的技能和主观性的影响,例如在设置样品照明以进行自动图像分析时。虽然 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件的选择和使用采集后降噪方面仍需小心。本文报告了这些对测量晶粒尺寸影响的实际例子,并将 EBSD 结果与光学结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶界时更高的分辨率所产生的影响。本文讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在需要量化微观结构异质性的更广泛背景下进行的,以便验证工程合金热变形的变形模型,这是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。KP Mingard、EG Bennett、AJ Ive 和 B Roebuck 2006 年 1 月
简单的光学技术。但是,EBSD 的自动化特性意味着它可以提供更多信息,而不受个人操作员的技能和主观性的影响,例如在自动图像分析的样品照明设置中。尽管 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件选择和采集后降噪的使用方面仍需谨慎。报告了这些对测量晶粒尺寸影响的实际示例,并将 EBSD 结果与光学获得的结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶边界方面的更高分辨率的影响。它讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在更广泛的背景下进行的,需要量化微观结构异质性,以验证工程合金热变形的变形模型,该模型是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。K P Mingard、E G Bennett、A J Ive 和 B Roebuck 2006 年 1 月
图1。天然TIO 2:NB(1 1 0)边界结构。(a),(b),(c)电子反向散射衍射(EBSD)图像质量和逆极图(IPF)地图,提供〜
预先存在的位错对极小尺度上金强度的影响 - 使用 EBSD 数据表征纳米压痕之前的局部位错密度,Paula Guglielmi 等人。.......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................ ........................................................................................................................................................................................................................ ........................................................................................................................................................................................................ 96
Banaras印度教杰出世界,正在邀请Appli博士学位奖学金,该奖学金是Dep尖端研究设备细胞仪(FCM),凝胶DOC,EBSD)的各种实验室。在D质谱系统色谱下,高RESO超级分辨率显微镜成像平台和高RE
在增材制造中,工艺参数直接影响材料的微观结构,从而影响所制造部件的机械性能。本文旨在通过在扫描电子显微镜 (SEM) 下结合高分辨率数字图像相关 (HR-DIC) 和电子背散射衍射 (EBSD) 图进行原位拉伸试验来表征局部微观结构响应,从而探索这种关系。所研究的样本是从通过定向能量沉积构建的双向打印单道厚度 316L 不锈钢壁中提取的。通过统计分析表征了晶粒的形态和晶体学纹理,并将其与该工艺的特定热流模式相关联。根据晶粒大小将其分为位于打印层内的大柱状晶粒和位于连续层之间界面的小等轴晶粒。原位拉伸实验的加载方向垂直于或沿打印方向进行,并展示不同的变形机制。对每个晶粒的平均变形的统计分析表明,对于沿构建方向的拉伸载荷,小晶粒的变形小于大晶粒。此外,HR-DIC 与 EBSD 图相结合显示,在没有单个或成簇的小晶粒的情况下,应变局部化位于层间界面处。对于沿打印方向的拉伸载荷,应变局部化存在
使用扫描电子显微镜(SEM,JSM-6700 F,JEOL,日本)对微结构进行表征。取向关系是用电子背部散射衍射(EBSD,Nordlysno,英国牛津郡)确定的。配备了能量分散X射线光谱(EDS)分析单元的300 kV传输电子显微镜(TEM,FEI TALOS F300C,U)用于高分辨率传输电子显微镜(HRTEM)观察和EDS元素分析。2.3机械性能测试
抽象的微结构依赖性变形和断裂行为是针对使用激光指导能量沉积(L-DED)方法打印的添加成分成分分级合金(CGA)的,以探索核能系统中不同金属关节的替代方法。从扫描电子显微镜(SEM)中的电子后散射衍射(EBSD)映射显示出明显的微观结构过渡,并降低了奥氏体形成元件(Ni和Mn),从奥斯丁岩()主导结构,包括一个复杂的复合结构,包括一个复杂的复合结构,并完全含有铁矿(ferrite),然后又有一位(),martensente and martense and themente and and and and and and and and and,以及ferente ant and and o and' 结构。EBSD数据,并使用Kikuchi衍射模式分析分析了变形机制和微观结构的演变。还使用扫描透射电子显微镜(STEM)进行了互补分析。富含Ni/Mn的奥斯丁岩含量的微观结构显示出两步性马塞塞利志转换的复杂变形机制(→→'),而保留在铁矿和/或mar虫基质中的次要奥氏体相位显示了单个变换途径(')。普通的错位滑行和通过部分脱位滑动的孪生在奥氏体变形中也很常见。同时,铁氧体和马氏体晶粒主要由普通位错滑和明显的晶格(晶粒)旋转变形。静态拉伸骨折也高度依赖于局部组成和相成分。