图 1 化学异质性诱导裂纹停止作为防止氢脆的措施的概念,以及具有奥氏体内部异质 Mn 分布的高强度钢的微观结构。a,概念示意图。b,电子背散射衍射 (EBSD) 相加图像质量 (IQ) 图,显示奥氏体-铁素体双相微观结构。c,基于扫描电子显微镜 (SEM) 的能量色散 X 射线光谱 (EDX) 图,揭示了微观结构中的整体 Mn 分布模式。化学缓冲区是奥氏体相内 Mn 高度富集 (14~16 at.% Mn) 的区域(其中一些以椭圆框标记)。d,高角度环形暗场扫描透射电子显微镜 (HAADF-STEM) 观察和 EDX 分析,显示在一个奥氏体晶簇甚至一个奥氏体晶粒内存在多个富 Mn 区。分别从标记的圆形和矩形框拍摄的选区电子衍射 (SAED) 和高分辨率 TEM (HR-TEM) 图像放在 STEM 图像的右侧。EDX 线轮廓是从 EDX 图中箭头标记的区域拍摄的。
摘要 本文详细介绍了如何使用 Rietveld 细化软件 MAUD 评估单相和双相材料的晶体学织构,并将其应用于洛斯阿拉莫斯国家实验室 (LANL) 获得的高压择优取向 (HIPPO) 中子衍射数据和增材制造生产的 Ti-6Al-4V 的电子背散射衍射 (EBSD) 极图。本文解决了 Rietveld 细化和软件操作中固有的许多隐藏挑战,以改善用户使用 MAUD 时的体验。本文对 MAUD 细化过程中的每个步骤进行了系统评估,重点是为任何版本的 MAUD 和任何材料系统设计一致的细化过程,同时也指出了以前开发的流程所需的更新。本文记录并解释了用户可能遇到的许多问题,并进行了多层次评估,以验证任何数据集的 MAUD 细化过程何时完成。还简要讨论了适当的样本对称性,以强调从 MAUD 中提取的纹理数据可能过于简单。本研究的附录中包含了两个应用所述过程的系统演练。这些演练的文件可在以下数据存储库中找到:https://doi.org/10.18434/mds2-2400。
1工程,应用材料,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州大学广场15801。2机械与核工程,宾夕法尼亚州立大学,宾夕法尼亚州大学公园,16802,美国3应用研究实验室,宾夕法尼亚州大学公园,宾夕法尼亚州16802美国摘要:结构性 - 托管加工关系已在添加性生产的TI-6AL-4V合金中进行了研究。使用原位电子显微镜(EM)以中等电流密度为5x10 5 A/cm 2进行5分钟进行处理,并通过抑制大量散热器的焦油加热,以使温度升高<180°C,并且机械性能不及时化。结果表明,虽然晶粒尺寸增加了约15%,但纳米性质增加了16%。这归因于明显的脱位产生,再生和聚类以及缺陷愈合。最终,残余应变降低,内在强度显着增加,这是由电流加工样品的高泰勒因子所证明的。这种新颖的加工技术代表了可能对高温处理或常规方法敏感的零件进行主动控制微观结构和内部缺陷的替代途径。关键字:电流处理;纳米纳斯;电子反向散射衍射(EBSD);透射电子显微镜(TEM); Schmid因子;泰勒因子。1。简介
本研究旨在确定超声纳米晶体表面修饰(UNSM)作为表面预处理对通过螺钉滚动过程制造的螺栓的性能和表面特性的影响。检查了UNSM处理后的表面粗糙度,硬度和微结构变化。结果没有明显的缺陷,例如通过UNSM处理预处理螺栓的螺栓滚动后所有制造样品的裂纹。此外,材料流程不断保持而无需断开。在UNSM治疗后,身体和螺钉零件都改善了表面粗糙度。以43%的速度提高了UNSM处理的螺钉部分的表面粗糙度。硬度测试表明,在UNSM球尖击中的表面上硬度最大,硬度提高到距表面深约500 µm。螺钉部分的硬度在471 HV时最高,这归因于以下事实:表面附近的谷物被变形并通过UNSM处理,然后通过螺钉滚动进行精制。。这些结果证实,螺钉滚动之前的UNSM处理有效地改善了螺丝螺栓的机械性能。
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
变体选择是钛合金中一种常见而复杂的现象,不仅受影响变体形核过程的微观组织特征(如晶粒取向、晶界、残余α相等)的支配,而且受冷却速率、残余应力等动力学因素的显著影响,尤其对于增材制造的钛合金。为研究冷却速率对激光立体成形(LSF) Ti-6Al-4V合金变体选择的影响,系统研究了激光立体成形样品(具有不同的冷却速率)不同区域但属于同一个β晶粒的α变体的选择。利用电子背散射衍射(EBSD)数据显示,虽然12种α变体均出现在不同的冷却速率下,但一些变体的面积百分比明显偏离不同冷却速率下相应的理论值。为定量表征变体选择的变化,进一步对按角度/轴类型区分的α / α边界长度分数进行统计分析。结果表明,由于残余应力较大,当冷却速度较高时(底部区域),IV 型 α / α 边界的长度分数(63.26 ◦ /[ − 10 5 5 – 3])大于其他类型的 α / α 边界的长度分数;而当冷却速度较低时(中间区域),II 型 α / α 边界(60 ◦ /[11 – 20])占主导地位,这可归因于 β → α 相变过程中的自调节机制。了解冷却速度对 α 变体选择的影响有助于理解 LSFed Ti 合金中的微观组织演变。
摘要:奥氏体347H不锈钢提供了极端操作条件(例如高温)所需的出色的机械性能和耐腐蚀性。由于组成和过程变化而导致的微观结构的变化有望影响其特性。识别微观结构特征(例如晶界)因此成为过程微观结构 - 循环中的重要任务。应用基于卷积神经网络(CNN)的深度学习模型是一种强大的技术,可以自动以自动化方式从材料显微照片中检测特征。与微观结构分类相反,分割任务的监督CNN模型需要像素的注释标签。但是,分割任务的图像的手动标记为在合理的时间范围内以可靠且可重复的方式生成培训数据和标签的主要瓶颈。尤其是,要通过更换合金组成来更快的材料发现,需要加快微观结构表征。在这项研究中,我们试图通过利用多模式显微镜直接生成标签而不是手动标记来克服此类局限性。我们将347H不锈钢的扫描电子显微镜(SEM)作为训练数据和电子反向散射衍射(EBSD)显微照片作为晶粒边界检测作为语义分割任务的像素标签。通过考虑一组深CNN体系结构来评估我们方法的生存能力。此外,我们发现幼稚的像素分割会导致较小的间隙和预测的晶界图中缺少边界。我们证明,尽管在两种模式之间的数据收集过程中产生了仪器漂移,但该方法在使用手动标记的类似分割任务中执行了相当的性能。通过在模型训练期间合并拓扑信息,晶粒边界网络和分割性能的连通性得到改善。最后,通过对下游任务的准确计算来预测潜在的谷物形态分布,这是微观结构表征的最终感兴趣。
开发了一种新的基于物理的模型,该模型可以准确预测从温度限制 (TL) 到全空间电荷限制 (FSCL) 区域的热电子发射发射电流。对热电子发射的实验观测表明,发射电流密度与温度 (J − T) (Miram) 曲线和发射电流密度与电压 (J − V) 曲线的 TL 和 FSCL 区域之间存在平滑过渡。了解 TL-FSCL 转变的温度和形状对于评估阴极的热电子发射性能(包括预测寿命)非常重要。然而,还没有基于第一原理物理的模型可以预测真实热电子阴极的平滑 TL-FSCL 转变区域,而无需应用物理上难以证明的先验假设或经验现象方程。先前对非均匀热电子发射的详细描述发现,3-D空间电荷、贴片场(基于局部功函数值的阴极表面静电势不均匀性)和肖特基势垒降低的影响会导致从具有棋盘格空间分布功函数值的模型热电子阴极表面到平滑的TL-FSCL过渡区域。在这项工作中,我们首次为商用分配器阴极构建了基于物理的非均匀发射模型。该发射模型是通过结合通过电子背散射衍射(EBSD)获得的阴极表面晶粒取向和来自密度泛函理论(DFT)计算的面取向特定的功函数值获得的。该模型可以构建阴极表面的二维发射电流密度图和相应的 J-T 和 J-V 曲线。预测的发射曲线与实验结果非常吻合,不仅在 TL 和 FSCL 区域,而且在 TL-FSCL 过渡区域也是如此。该模型提供了一种从商用阴极微结构预测热电子发射的方法,并提高了对热电子发射与阴极微结构之间关系的理解,这对真空电子设备的设计大有裨益。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。