摘要:心电图分类或心跳分类是心脏病学中极为有价值的工具。基于学习的深度技术,用于分析ECG信号的技术有助于人类专家及时诊断心脏疾病,并有助于挽救宝贵的生命。本研究旨在将ECG记录图像的数据集数字化到时间序列信号,然后在数字化数据集上应用深度学习(DL)技术。提出了将ECG信号分类为不同心脏类别的最新DL技术。多个DL模型,包括卷积神经网络(CNN),长期的短期记忆(LSTM)网络以及使用自动编码器的基于自律的学习(SSL)模型,并在本研究中进行了比较。这些模型是由来自巴基斯坦各种医疗机构的患者的ECG图产生的数据集培训。首先,将ECG图像数字化,将Lead II心跳分段,然后将数字化信号传递给了提出的分类深度学习模型。在本研究中使用的不同DL模型中,提出的CNN模型达到了约92%的最高精度。所提出的模型非常准确,并为实时和直接监视ECG信号提供了快速推断,这些ECG信号是从放置在身体不同部位上的电极(传感器)中捕获的。使用ECG信号的数字化形式而不是图像进行心律失常分类,可以使心脏病学家直接从ECG机器上直接在ECG信号上使用DL模型,以实时和准确地监视ECGS。
可靠的脑电图(EEG)信号获取对于医疗疾病,脑机构界面(BCIS)和神经科学研究至关重要。然而,心电图(ECG)和电解图(EOG)伪像经常污染EEG记录,损害数据质量和解释性。传统的删除方法可能会扭曲脑电图信号,或需要其他传感器进行ECG和EOG获取。本研究使用多元预测方法将删除伪像作为回归任务,从EEG数据本身重建ECG和EOG信号。我们的方法在两个独立数据集上进行了严格评估,用于ECG和EOG信号,并在不同个体的未见数据上进一步验证。使用平方误差(MSE),平均绝对误差(MAE)和峰值信噪比(PSNR)评估性能。我们的方法实现了与使用实际的ECG和EOG记录的常规方法相媲美的方法,证明了使用原始EOG记录清洁清洁的脑电图和脑电图之间的PSNR为39 dB。这使我们的方法成为经济高效且非侵入性的替代方案。这些发现提出了脑电图噪声过滤研究的有希望的新方向。
CédricCannard 1,2,HelanéWahbeh2,Arnaud Delorme 1,2,3 1 Cent de Recherche Cerveau et Cognition(CERCO),CNRS,Toulouse III大学,法国2号大学2 Noetic Sciences(Ions)3 Swartz计算神经科学中心(SCCN),INC,UCSD,LA JOLLA,美国关键字:开放源代码,EEGLAB,EEG,EEG,ECG,ECG,PPG,PPG,HRV,QEEG,QEEG,特征分析,Hep/Hep/hep/hep/heo,hep/heo,brain heart Interplay,Heart Artifact,Heart Artifact,Heart Artifact,Heart Artifact。摘要:BrainBeats工具箱是一个开源EEGLAB插件,旨在共同分析EEG和心血管(ECG/PPG)信号。它提供了三个主要协议:心跳诱发的潜力评估,基于特征的分析和心脏伪像从EEG信号中提取。它应该帮助研究人员和临床医生研究脑力相互作用,并具有增强的可重复性和可及性。摘要:皮质和心血管系统之间的联系正在引起人们的关注,因为它们有可能对大脑和心脏功能耦合提供宝贵的见解。EEG和ECG/PPG提供了无创,具有成本效益和便携式解决方案,用于捕获实验室,临床或现实世界中的大脑心脏相互作用。但是,由于技术挑战和缺乏准则,该域中的可扩展应用程序受到限制。现有工具通常缺乏统计方法,易于使用的用户界面或大型数据集的自动功能,对于可重复性至关重要。在标准化定量脑电图(QEEG)和心率变异性(HRV)特征提取方法中进一步存在,破坏了临床诊断或机器学习的鲁棒性(ML)模型。应对这些挑战,我们介绍了Brainbeats工具箱,该工具箱是作为开源EEGLAB插件实现的,提供了一套信号处理和功能突出功能。工具箱集成了三个主要协议:1)心跳诱发电位(HEP)和振荡(HEO),用于以毫秒精度评估时锁的脑心脏相互作用; 2)QEEG和HRV功能提取,用于检查各种大脑和心脏指标之间的关联或构建基于功能的ML模型; 3)从EEG信号中自动提取心脏伪像,以消除进行EEG分析的任何潜在的心血管污染。我们提供了一个分步教程,用于在包含同时64通道EEG,ECG和PPG的开源数据集上执行这三种方法。可以通过图形用户界面(GUI)或命令行调整一系列参数以量身定制独特的研究需求。Brainbeats应该使大脑心脏的相互作用研究更容易访问和重现。
睡眠是通过记录各种方式来评估一种复杂的生理过程。我们从14,000多个参与者中策划了一个大型的多模式睡眠记录的大型多摄影数据集。掌握了这个广泛的数据集,我们开发了SleepFM,这是第一个用于睡眠分析的多模式基础模型。我们表明,与标准的成对构造学习的表示相比,一种新颖的对比学习方法可以显着证明下游任务绩效。A logistic regression model trained on SleepFM 's learned embeddings out- performs an end-to-end trained convolutional neu- ral network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing de- tection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61)。值得注意的是,从90,000名候选人中获取其他响应的记录剪辑,学到的嵌入在检索其他方式的记录剪辑方面达到了48%的平均准确性。这项工作展示了整体多模式睡眠模型的价值,以完全捕获睡眠记录的丰富性。SleepFM是开源的,可在https://github.com/rthapa84/sleepfm-codebase上找到。
摘要 - 心律失常是正常心律的不规则变化,有效的手动识别需要大量时间,并且取决于临床医生的经验。本文提出了基于深度学习的新型2D卷积神经网络(CNN)方法,以准确地分类五种不同的心律失常类型。在心电图(ECG)信号上测试了所提出的体系结构的性能,这些信号从MIT-BIH心律失常基准数据库中获取。ECG信号被分割为心跳,每个心跳转换为2D灰度图像,作为CNN结构的输入数据。发现训练结果的97.42%发现,提出的架构的准确性表明,具有转换后的2-D ECG图像的拟议的2-D CNN体系结构可以达到最高的精度,而无需进行任何预处理和特征提取和ECG信号的特征选择阶段。
CédricCannard 1,2,HelanéWahbeh2,Arnaud Delorme 1,2,3 1 Cent de Recherche Cerveau et Cognition(CERCO),CNRS,Toulouse III大学,法国2号大学2 Noetic Sciences(Ions)3 Swartz计算神经科学中心(SCCN),INC,UCSD,LA JOLLA,美国关键字:开源,EEGLAB,EEGLAB,EEG,ECG,ECG,PPG,PPG,HRV,特征分析,心跳 - 事实/振荡电位/振荡(HEP/HEO),心脏组成部分,心脏成分供电。摘要:Brainbeats工具箱是一个开源EEGLAB插件,旨在共同分析脑血管和心血管(ECG/PPG)信号。它提供了三个主要方案:心跳诱发潜力评估,基于特征的分析和心脏伪像从脑电图中提取。这将有助于研究人员和临床医生研究脑力相互作用,并具有增强的可重复性和可及性。摘要:皮质和心血管系统之间的联系正在引起人们的关注,因为它有可能对大脑和心脏功能耦合提供宝贵的见解。当前的联合分析方法在很大程度上涉及侵入性或高成本神经影像学方法。EEG和ECG/PPG提供了非侵入性,具有成本效益和便携式替代方案,可在实验室和临床环境中进行更广泛的数据收集。然而,由于其复杂性,对这些生物信号的分析对于可扩展应用是具有挑战性的。现有的研究和工具通常在处理和统计方法,易于使用的用户界面或大型数据集的批处理处理能力方面缺乏共识,从而阻碍了可重复性。在脑电图和心脏变异性(HRV)特征提取的标准化方法中,还存在进一步的空隙,破坏了临床诊断或机器学习模型的鲁棒性。我们介绍了针对这些挑战的Brainbeats工具箱,开源EEGLAB插件提供了一套信号处理和特征 - 萃取功能的套件,这些功能符合当前的指南和建议。工具箱集成了三个主要协议:1)心跳诱发电位(HEP)和振荡(HEO); 2)EEG和HRV特征提取; 3)自动删除脑电图信号的心脏伪像。伴随着样本数据和指导,Brainbeats旨在促进大脑心脏的相互作用研究和可重复性。这个开源工具箱为研究大脑心脏相互作用的临床医生和研究人员提供了宝贵的资源,可以根据独特的研究需求量身定制。
Eikonal方程已成为准确有效地对心脏电活激活进行建模的必不可少的工具。原则上,通过匹配临床记录和核心心电图(ECG)的匹配,可以纯粹的非侵入性方式构建患者特异性心脏生理学模型。尽管如此,拟合程序仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向敌军问题。Geodesic-BP非常适合GPU加速机器学习框架 - 使我们能够优化Eikonal方程的参数以重现给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。fur-hoverore,我们将算法应用于双心脑兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助未来功能的心脏模型的功能 - 符合临床时间段落的同时保持最先进的心脏模型的生理准确性。
摘要:随着心理健康问题速度飙升,情绪识别在现代医疗保健中变得越来越重要。这项研究的重点是通过分析心电图(ECG)信号的特征来检测情绪状态,因为先前的研究表明,情绪刺激会导致个人生理信号的变化。在这项研究中,我们使用了一个数据集,该数据集包含从观察情绪刺激的受试者中获取的154个单模式ECG信号;每个标记都有不同情绪状态的价值。我们在每个信号中进行预处理,然后提取心率变异性特征,我们使用两个机器学习模型,逻辑回归和支持向量机进行了分析。总体而言,我们在支持向量机上进行了两项分类任务(快乐与高唤醒与低唤醒),每个任务的准确性约为75%。这项研究提供了进一步的证据,证明了心电图信号与情绪之间的相关性以及对可能受益于医学领域心理健康治疗的技术的洞察力。
摘要 - Eikonal方程已成为一种不可或缺的工具,用于对心脏电动激活进行巧妙和有效地建模。原则上,通过匹配临床记录和基于艾科尼尔的心电图(ECG),可以以纯粹的非侵入性方式构建心脏电子生理学的患者特异性模型。否则,拟合过程仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向艾科尼尔问题。Geodesic-BP非常适合GPU加速机器学习框架,从而使我们能够优化Eikonal方程的参数以复制给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。此外,我们将al-gorithm应用于双室兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助心脏模型的未来功能化,同时保持临床时间的限制,同时保持先进心脏模型的生理准确性。
睡眠是通过记录各种方式来评估一种复杂的生理过程。我们从14,000多个参与者中策划了一个大型的多模式睡眠记录的大型多摄影数据集。掌握了这个广泛的数据集,我们开发了SleepFM,这是第一个用于睡眠分析的多模式基础模型。我们表明,与标准的成对构造学习的表示相比,一种新颖的对比学习方法可以显着证明下游任务绩效。A logistic regression model trained on SleepFM 's learned embeddings out- performs an end-to-end trained convolutional neu- ral network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing de- tection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61)。值得注意的是,从90,000个候选者中检索模态剪辑对时,学到的嵌入在检索模态剪辑对方面具有48%的平均准确性。这项工作展示了整体多模式睡眠建模的价值,以完全捕获睡眠记录的丰富性。SleepFM是开源的,可在https://github.com/rthapa84/sleepfm- codebase上找到。