图例 ECLSS = 环境控制与生命支持系统 ISRU = 现场资源利用 PMAD = 电源管理与分配 RFC = 再生燃料电池 TRL = 技术就绪水平 * = 特定应用技术就绪水平
• 可靠的长期生命支持,具备独立于地球的诊断和维修功能(L、T、M) • 减少 20% 以上的备件和安装质量(T) • 实现单次任务 >800 天而无需补给(T) • 重复任务,休眠时间 >9 个月(L、T、M) • 2 毫米汞柱二氧化碳下氧气回收率 >75%(T) • 舱外活动高压氧气补给(L、M) • 水回收率 >98%(L、T、M) • 去除可吸入的月球和火星尘埃(L、M) • 行星保护兼容的 ECLSS 通风(M)
电化学能源转换技术在太空任务中起着至关重要的作用,例如在国际空间站(ISS)的环境控制和生命支持系统(ECLSS)中。它们对于未来的氧气,燃料和化学生产的长期太空旅行也至关重要,在这种氧气,燃料和化学生产中,不可能从地球上重新供应资源。在这里,我们提供了当前现有的电解能转化技术,用于空间应用,例如质子交换膜(PEM)和碱性电解仪系统。我们讨论了这些设备中的界面过程受到减少的重力影响,并对电解系统的未来应用提供了前景,例如,现场资源利用率(ISRU)技术。还讨论了计算建模的观点,以预测减少的重力环境对管理电化学过程的影响,并提出了实验建议,以更好地理解降低引力环境中燃气气泡形成和脱离等效率效应过程。
一般而言,环境控制系统 (ECS) 是指负责为给定有效载荷(货物、生物和人员)维持舒适密闭环境的设备,即将温度、压力和成分保持在可接受的范围内,通常通过循环流体进行热控制和生命支持(如果需要)(术语 ECLSS,即环境控制和生命支持系统,也用于明确后者)。恶劣环境中的车辆的 ECS 要求最高:潜艇、飞机和航天器。ECS 通常侧重于车辆的内部,而外部的环境控制通常称为环境保护系统 (EPS)。航空航天工程(航空航天)是高科技运输工程,涉及车辆、基础设施和有效载荷。航空是指涉及人造飞行设备(载人和无人驾驶飞机)以及参与其使用的人员、组织和监管机构的活动。• 交通工具(飞机和航天器;飞机=航空器(气球和飞艇)和飞行器(飞机和旋翼机),有人驾驶或无人驾驶)。
• 清洗泵分离器组件 (PPSA)——支持环境控制和生命支持系统 (ECLSS) 的探索开发硬件。该装置结合了传统压力控制和泵组件、分离器管道组件和清洗过滤器的功能,以提供最佳性能,同时支持未来在空间站进行的探索演示。• 空间综合 GPS/INS (SIGI)——支持货物和机组人员车辆到达和离开空间站时定位操作所需的关键硬件。• 电缆执行器组件,右侧硬停止——备用电缆,用于支持机组人员使用机组人员医疗保健系统高级阻力运动设备 (ARED)。• 便携式肺功能系统 (PPFS)——欧洲航天局 (ESA) 和 NASA 之间的此次合作用于支持空间站机组人员的呼吸、心血管和代谢研究。
这篇小型评论提供了一个视角,即催化如何为人类太空探索的挑战做出贡献,即在不久的将来在月球上建立太空栖息地,以及在遥远的未来实现火星之旅。本文回顾了催化在太空探索中的作用以及基于催化化学过程的人类生命元素资源供应。作为次要影响,在长期太空任务固有的可持续性要求的高约束下学习催化,可以有利于推进目前开发的催化过程,以实现地球上的绿色循环经济。因此,深入研究空间应用催化也可以为地球上紧迫的工业、环境和社会可持续性挑战提供答案,例如联合国可持续发展目标所表达的挑战。即使对于今天的短期太空任务,催化已经在国际空间站 (ISS) 的环境控制和生命支持系统 (ECLSS) 中发挥着关键作用,此外,在燃料和推进剂合成以及 CO 2 等燃烧产物的回收中也发挥着关键作用。
自 20 世纪 80 年代以来,可调谐半导体激光光谱仪一直是 NASA 地球科学的重要组成部分 1 。早期的高空飞机光谱仪使用低温冷却铅盐激光器来测量万亿分之一级别的化学物质,从而有助于了解关键的地球系统。随着可调谐激光器逐渐成熟并可在室温条件下运行,可调谐激光光谱仪的同步小型化使得它们可以集成到 NASA 行星科学平台中,例如火星好奇号探测器上的可调谐激光光谱仪,以了解火星上的地球化学过程和可能的生命特征 2 。NASA 还投资了可调谐激光光谱仪演示,以监测对国际空间站上载人航天至关重要的气体 3 。LAMS 是第一个用于大气监测和载人航天环境中环境控制与生命支持系统 (ECLSS) 硬件反馈控制的可调谐激光光谱仪系统。有关这一目标的动机和之前 TLAS 的开发将在其他地方描述 4 。
本文概述了NASA支持的活动,在以下能力领域开发环境控制和生命支持(ECLSS)技术:生命支持,环境监测,消防安全和物流。NASA一直在提炼技术需求,包括网关,月球表面,火星运输和火星表面任务。在相关环境中验证技术,在低地球轨道(LEO)和地面测试中,对于了解技术性能和较长的持续时间性能至关重要。轨道和地面测试为NASA的技术决策提供了填补勘探空白的信息。NASA 在整个技术准备谱系中都有多个技术项目,具有填补或部分填补勘探空白的潜力。 对于每个功能领域,本文将描述过去一年中选择的能力差距,NASA技术项目的成熟,以及如何使用关键性能参数(KPP)来衡量能力差距封闭的程度。 kpp正在发展,但它们仍然为传达进度并确定发展需求提供了有用的措施。在整个技术准备谱系中都有多个技术项目,具有填补或部分填补勘探空白的潜力。对于每个功能领域,本文将描述过去一年中选择的能力差距,NASA技术项目的成熟,以及如何使用关键性能参数(KPP)来衡量能力差距封闭的程度。kpp正在发展,但它们仍然为传达进度并确定发展需求
Robyn Gatens主任,国际空间站NASA总部Robyn Gatens女士是NASA总部的人类勘探和运营宣教局国际空间站(ISS)的董事。她还是环境控制和生命支持(ECLSS)和机组人员健康和绩效系统的机构高级专家。作为国际空间主管,盖滕斯(Gatens)担任机构级别的空间站计划的战略,政策,整合和利益相关者参与,包括使用该站进行研究和技术示范,包括为NASA的Artemis任务提供支持,以及通过实现成功,长期的长期私人私人领域的低地球轨道(LEO)的活动来确保美国在低地球轨道(LEO)中的持续存在。在她在美国国家航空航天局(NASA)的35年中,加滕斯(Gatens)领导了人类太空飞行任务的生活支持和居住系统的发展和管理。她还领导了代理机构的战略和预算计划,以将未来深空探索任务所需的这些居住系统技术成熟,并使用ISS作为示范测试台。她于1985年在阿拉巴马州亨茨维尔的马歇尔太空飞行中心开始了NASA职业生涯。她在马歇尔(Marshall)担任过各种领导职务,包括猎户座航天器机组人员支持和热系统的经理,然后于2012年转移到NASA总部。gatens是NASA杰出领导力和出色成就奖章的获得者,并拥有佐治亚理工学院的化学工程学士学位。
简介:在NASA或COSPAR能够为MARS等地点设定行星保护要求之前,需要解决许多重要的知识差距(1)。最重要的知识差距之一是了解船员栖息地和太空套装的微生物泄漏。当前的ECLSS(环境控制和生命支持系统)和PLS(便携式生命支持系统)要求不包括控制可能与通风或泄漏的气体一起逃脱的微生物的任何规定。当前一代的NASA空间西装可以以高达100 cm 3 /min的速度泄漏。在名义操作期间(2)。ISS(国际空间站)有意发射像CO 2这样的大气气体,以维持机组人员的可居住条件。此外,每次将气闸用于EVA(外部活动)时,内部大气都会随附。由于不可能对机组人员进行消毒,因此重要的是要了解,如果在这些通风和泄漏的产品中夹着任何微生物,该怎么办。也重要的是要了解这些微生物是否可以在外面表面生存。最近对ISS的俄罗斯段的采样表明,来自ISS内部的细菌和真菌可能能够在外表面上生存(3)。NASA开发了一种无菌抽样工具,可在EVA期间使用,并计划从ISS上的通风口收集样品以构建这些结果。这项工作的结果将用于制定行星保护要求,以从船员体积中排气和泄漏的气体。