蒙特卡洛 (MC) 方法已用于计算半导体中的半经典电荷传输超过 25 年,是微电子器件模拟最强大的数值工具 [1]。然而,当今的技术将器件尺寸推向了极限,传统的半经典传输理论已不再适用,需要更严格的量子传输理论 [2]。为此,人们提出了各种基于格林函数 [3] 或维格纳函数 [4] 方法的电荷传输量子动力学公式。虽然这种量子力学形式允许严格处理相位相干性,但它们通常通过纯现象学模型描述能量弛豫和失相过程。人们还提出了一种用于分析载流子-声子相互作用下的瞬态传输现象的完整量子力学模拟方案 [5]。然而,由于需要大量计算,其适用性仍然仅限于短时间尺度和极其简单的情况。因此,尽管人们付出了很多努力,尽管在研究这些量子动力学公式方面取得了无可置疑的智力进步,但它们在强散射动力学存在下的实际设备中的应用仍然是一个悬而未决的问题。Datta、Lake 和同事的最新成果似乎很有希望 [6]。然而,他们的稳态格林函数公式不能应用于时间相关的非平衡现象的分析,而这种现象在现代光电器件中起着至关重要的作用。在本文中,我们提出了一种广义 MC 方法来分析量子器件中的热载流子传输和弛豫现象。该方法基于控制单粒子密度矩阵时间演化的动力学方程组的 MC 解;它可以被视为对开放系统的扩展
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。
过去几年中,量子信息论的最新发展强烈推动了复杂量子现象的表征。在这样的框架中,一个关键概念就是纠缠。纠缠除了被认为是量子计算和通信任务的基本资源 [1] 之外,还被用来更好地表征不同多体量子系统在相关哈密顿量的某些特征参数发生变化时的临界行为;后一种现象被称为量子相变 (QPT) [2]。事实上,人们还没有完全深入理解 QPT 的普遍性质。在这种情况下使用纠缠的特殊之处在于,作为量子关联的单一直接测度,它应该允许对 QPT 进行统一处理;至少,每当发生的 QPT 归因于系统的量子性质时,这总是在 T 0 时,因为不存在热涨落。 [3] 中首次描述了自旋 1=2 链中单自旋或双自旋纠缠与 QPT 之间的关系,其中注意到并发度的导数在 QPT 的对应性上表现出发散,并具有适当的标度指数。随后在 [4] 中研究了 L 自旋块的纠缠及其在表现出临界行为的自旋模型中的标度行为。最近在 [5] 中解决了通过纠缠来表征费米子系统基态相图的问题,其中展示了如何通过研究单点纠缠来重现已知(数值)相图的相关特征。虽然这是一个有希望的起点,但仍需澄清哪些量子关联导致了 QPT 的发生:是两点还是共享点(多部分),是短程还是长程。事实上,要回答上述问题,需要对任何两个子系统之间的纠缠进行详尽的研究。如果子系统只有 2 个自由度,则共生性可以正确量化量子关联 [6]。一个概括
通过诱变................................................................................................................................ 11
反应性氧化物(ROS)对活细胞生存能力和增殖的影响很多。由于它们与不同类型的生物分子反应的能力,ROS参与了许多细胞功能1。维持氧化还原稳态的能力至关重要,失衡会导致各种可能的疾病。可以利用受控的ROS产生以产生细胞中的氧化应激,导致细胞死亡,目的是开发用于抗癌治疗的药物和无药物治疗工具。氨基丙基官能化的ZnO NC(ZnO-NH 2 NC)被证明可以使用已批准的医疗设备Lipozero G39刺激超声(US)时,能够以可调且可重复的方式产生ROS。羟基自由基的产生是美国暴露下惯性空化的结果。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
摘要 - 这项工作报告并彻底讨论了由Metas开发的双重约瑟夫森阻抗桥与CMI和Inrim-Polito开发的电子完全数字阻抗桥梁之间的双边比较结果。桥的目标精度在前者的水平为10-9至10-8的水平,而后者的零件水平为10 7的水平。用R:R和R:C标准测试了桥梁,名义幅度为12。9 K,具有量子厅电阻标准,在适用于从AC量子大厅电阻标准或AC/DC可计算的可计算传递电阻标准标准的AC量子大厅电阻标准的主要直接实现ohm和Farad的条件下。对于涉及幅度比的情况,结果在不确定性的预期水平上完全兼容,但是使用R:C标准标准的相测量显示出一些不兼容。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
摘要 — 葡萄叶锈病是最常见的葡萄叶病之一,严重影响葡萄产量,导致全球葡萄产量损失 20%-40%。因此,及时有效地识别该病害有助于制定早期治疗方法,以控制其蔓延并减少经济损失。为此,近年来,人们广泛研究了使用计算机视觉和机器学习技术识别植物疾病。本文旨在提出一种基于高性能卷积神经网络 (CNN) 的图像检测器,该检测器在低成本、低功耗平台上实现,以实时监测葡萄叶锈病。为了满足嵌入式系统典型的严格约束,我们开发了一种基于 CANDECOMP/PARAFAC (CP) 张量分解的新型低秩 CNN 架构 (LR-Net)。这样获得的压缩 CNN 网络已在特定数据集上进行了训练,并在低功耗、低成本的 Python 可编程机器视觉相机中实现,以进行实时分类。进行了大量的实验,结果表明 LR-Net 在推理时间和内存占用方面都优于最先进的网络。
氢的生产预计将在全球范围内强劲增长,也是欧洲和意大利战略计划的一部分。氢的生产在高度多样化的能源方面是战略性的。实际上,还可以通过利用可再生能源和国家电网来广泛生产氢。对于脱碳至关重要,这些部门被确定为“难以减弱”,并且是产生电子燃料的基础。从具有较高的可再生能源能力的角度来看,可以考虑具有可以利用的能量盈余来产生氢以存储的能量。事实证明,它是季节性存储的最佳能源载体。电解液对于从电力开始的氢产生至关重要。研究和开发的重点是改善电解室的最新面积,以具有以下特征: