2。D. jurries,生物滤器(生物底片,营养缓冲液和建造的湿地),用于雨水排出污染,第1期。一月。(2003)。3。O。美国EPA,“最佳管理实践(BMP)选址工具。” 4。O. Addo-Bankas,Y。Zhao,A。Gomes和A. Stefanakis,“城市人工景观水体的挑战:对生态系统服务增强的治疗技术和恢复策略”,过程,10(12),(2022),(2022)。 5。 Z. Liu和J. Wu,“基于景观的解决方案才能应对中国不断扩大和口渴城市的水挑战”,Landsc。 ecol。 ,37(11),2729-2733(2022)。 6。 M. Ranzato,“景观元素作为综合水管理的基础”,Urban Water J.,14(7),694-703(2017)。 7。 T. Dorman等。 ,圣安东尼奥河流域低影响开发技术设计指导手册,第1卷。 圣安东尼奥,德克萨斯州:圣安东尼奥河管理局(2013年)。 8。 波特兰市,“植被的Swales”,在BMPS技术设计手册中,3(9),(2010年)。 9。 爱荷华州立大学,“植物宣传系统”,载于爱荷华州雨水管理手册,第23页(2008年)。 10。 查尔斯河流域协会,“植物宣传”(2008年)。 11。 A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。 ,46(20),6731-6742(2012)。 12。 Watershad Prot。 ,1(3),122-123(1989)。 13。 M. Leroy等。O. Addo-Bankas,Y。Zhao,A。Gomes和A. Stefanakis,“城市人工景观水体的挑战:对生态系统服务增强的治疗技术和恢复策略”,过程,10(12),(2022),(2022)。5。Z. Liu和J. Wu,“基于景观的解决方案才能应对中国不断扩大和口渴城市的水挑战”,Landsc。ecol。,37(11),2729-2733(2022)。6。M. Ranzato,“景观元素作为综合水管理的基础”,Urban Water J.,14(7),694-703(2017)。7。T. Dorman等。,圣安东尼奥河流域低影响开发技术设计指导手册,第1卷。圣安东尼奥,德克萨斯州:圣安东尼奥河管理局(2013年)。 8。 波特兰市,“植被的Swales”,在BMPS技术设计手册中,3(9),(2010年)。 9。 爱荷华州立大学,“植物宣传系统”,载于爱荷华州雨水管理手册,第23页(2008年)。 10。 查尔斯河流域协会,“植物宣传”(2008年)。 11。 A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。 ,46(20),6731-6742(2012)。 12。 Watershad Prot。 ,1(3),122-123(1989)。 13。 M. Leroy等。圣安东尼奥,德克萨斯州:圣安东尼奥河管理局(2013年)。8。波特兰市,“植被的Swales”,在BMPS技术设计手册中,3(9),(2010年)。9。爱荷华州立大学,“植物宣传系统”,载于爱荷华州雨水管理手册,第23页(2008年)。 10。 查尔斯河流域协会,“植物宣传”(2008年)。 11。 A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。 ,46(20),6731-6742(2012)。 12。 Watershad Prot。 ,1(3),122-123(1989)。 13。 M. Leroy等。爱荷华州立大学,“植物宣传系统”,载于爱荷华州雨水管理手册,第23页(2008年)。10。查尔斯河流域协会,“植物宣传”(2008年)。 11。 A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。 ,46(20),6731-6742(2012)。 12。 Watershad Prot。 ,1(3),122-123(1989)。 13。 M. Leroy等。查尔斯河流域协会,“植物宣传”(2008年)。11。A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。 ,46(20),6731-6742(2012)。 12。 Watershad Prot。 ,1(3),122-123(1989)。 13。 M. Leroy等。A. P. Davis,J。H。Stagge,E。Jamil和H. Kim,“草雪的性能改善了高速公路径流的水质”,Water Res。,46(20),6731-6742(2012)。12。Watershad Prot。,1(3),122-123(1989)。13。M. Leroy等。T. Schueler,“东海岸海岸沿线的草丛表演:防水保护的实践”,Cent。,“植被的表演,以改善中等的Trffic市区的道路径流质量”,Sci。总环境。,566-567,113-121(2016)。
提交日期:2024 年 7 月 5 日; 2024 年 11 月 23 日接受;发布日期:2024 年 12 月 21 日。摘要:磷和钾是植物生命周期中必需的化学元素,被认为是农业发展的限制因素。每年,大量商业肥料被施用在田间以满足植物生产的需求,但这些投入的低效率会对环境产生负面影响。当施入土壤后,这些元素很快就会通过化学反应固定在粘土矿物中,从而难以被植物根部吸收。作为大量使用化学投入的替代方案,许多研究正致力于利用栖息在根际并具有使不溶性常量营养素可被生物利用的能力的细菌。因此,本研究的目的是对磷酸盐和钾溶解细菌、其作用机制及其作为生物接种剂的用途进行文献综述。根据本研究的提议,通过 Web of Science、SciELO、Google Scholar、Periódico Capes 和 Scopus 等数据库选出科学文章。本综述介绍了根瘤菌的用途和多功能性的相关结果,表明它们是一种具有多样化生态应用的低成本策略,可促进农业的可持续性。关键词:常量营养素;微生物;生物利用度。
Adina Dumitru(EEA),AltuğuratBaşer(土耳其统计研究所),Ana Iglesias(Madrid技术大学教授(UPM),欧洲环境局(EEA),科学委员会成员,BožidarPavlović(Kosovo环境评估机构,Cecile Gracy(法国,ADEME),Clara Leandersson(Ramboll),Daire McCoy,Dr.(Seai的行为经济学部门,爱尔兰可持续能源机构),DánielZách(匈牙利中央统计局) JankaSzemesová博士(斯洛伐克水文学研究所)、Jesús Pulido Domínguez(西班牙,SG 远见、能源战略和法规、能源国务秘书处、生态转型和人口挑战部)、Joachim Spangenberg(可持续欧洲研究所 SERI、欧洲环境署 (EEA) 科学委员会成员)、Joze Orecný(斯洛伐克水文气象研究所)、Katja Kruit(CE 代尔夫特)、Marce Zemko(斯洛伐克水文气象研究所)、Melek YÜCEL(土耳其统计局)、Mieke De Schoenmakere(EEA)、Natasa Kovac(斯洛文尼亚环境署)、Nives Della Valle(欧盟委员会、联合研究中心)、Oğuz Kürşat KABAKÇI(土耳其能源和自然资源部能源效率和环境司)、Paula Cristina Gomes(葡萄牙、可持续能源)、Paulo Zoio(葡萄牙,能源可持续性服务局)、Rajko Dolinsek(斯洛文尼亚,Pozitivnaenergija)、Sajan Shalin(爱尔兰可持续能源管理局 SEAI 行为经济学部门)、Stephane Quefelec(欧洲经济区)、Tessa Bogers(FOD Economie - SPF Economie)、Volkan KOYUNC(土耳其统计局)、Yann Trausch(卢森堡气候署)。
摘要|目的:描述2012年至2021年之间巴伊亚糖尿病的死亡率。Méto-:使用从SUS(SIH/SUS)医院信息系统和健康死亡率信息系统(SIM/MS)获得的时间系列二级数据的描述性生态研究。通过描述统计数据来分析以下变量:发生,性别,颜色/种族,年龄段,婚姻状况,教育和发生地点的年份。结果:从2012年到2021年,总共有52,307例与糖尿病有关的死亡,代表34.9/100,000居民的死亡率。在此期间,死亡记录有所增加,除了2014年至2015年之间的略有减少。在60至69岁的年龄组中,死亡人数更高(48.2%),女性(55.5%),率为38例/100,000居民。此外,棕色种族(55.2%),已婚婚姻状况(28.6%),缺乏正规教育(31.2%)以及医院环境中死亡的发生(63.9%)是主要特征。结论:多年来,巴伊亚的糖尿病与糖尿病相关的死亡率有所增加,尤其是在2012年至2021年期间,并且根据性别,年龄组,颜色/种族和教育水平而有所不同。这些结果强调了对高风险群体有针对性的护理策略的必要性,旨在降低与这种疾病相关的死亡率。
[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
地址:巴西布拉干萨 - 帕拉州 电子邮件:silvana.santos@ifpa.edu.br 摘要 在亚马逊东部帕拉州的东北部地区,高效微生物 (ME) 的勘探和表征有助于减轻因土地使用不当和固体废物造成的影响。使用生物投入(例如 ME)是一种可持续技术,生产者可以轻松获取和复制,并且符合可持续发展目标 (SDG)。此外,这也是巴西农业综合企业战略规划(2022-2050 年)的目标之一,该规划强调了用生物产品替代农业传统上使用的产品(如可溶性肥料)的重要性(Oliveira 和 Santos,2023 年)。本研究的目的在于:i) 改进 Andrade 等人描述的高效微生物的收集、配制和生产方法。 (2020)适应热带亚马逊气候条件,ii)评估高效微生物在加速和丰富堆肥方面的应用效率。样本是在两种条件下收集的:在森林碎片中和在温室中。在温室里,垃圾被转移到塑料盒中,并用煮熟的米饭作为诱饵。微生物的应用分三个时期进行:2023年1月28日至7月5日; 2023 年 3 月 30 日至 4 月 6 日和 2024 年 4 月 9 日至 16 日。在由有机废物组装的 12 个堆肥堆中使用浓度为 40% 和 100% 的 ME 悬浮液,以纸板和干树叶作为碳源;粪肥和豆科植物作为氮源。通过评估温度和 pH 值以及化学分析的有机化合物中的营养成分来监测堆肥堆。与 100% 浓度相比,添加 40% 浓度的 ME 悬浮液可提高化合物的质量。关键词:生态功能、亚马逊生物群、生物产品、回收。摘要 在亚马逊东部帕拉州的东北部地区,高效微生物 (EM) 的勘探和表征有助于减轻不当使用土地和固体废物所造成的影响。使用生物投入,如ME,是一种可持续的技术,易于生产者获取和复制,符合可持续发展
摘要钢铁行业产生的各种废物,该矿石一直是最被回收和回收的对象。Alto-Forno炉渣在回收中得到了很好的定义,但是,动作的矿渣反过来已经发现很难被正确享受,尤其是在其巨大的基本性方面。根据巴西钢铁学院的数据,2011年至2020年之间在巴西的钢铁生产约为3.37亿吨。这平均产生了约4000万吨的Scum Scoria。在当前工作中,提出了在构造中使用范围范围的可行性。由于其化学不稳定性和可降解的物理结构,钢的Scoria被认为是钢制造的残留物和该过程的副产品,因此不建议直接在建造中进行直接使用,因为其降解,膨胀性和低电阻会损害最终产品的稳定性。为此,开发了浮渣治疗分析,其中进行了氢氧化和碳化过程。测试以评估捕获烟雾2的方法,并将氧化物(CAO,MGO)稳定到aciaria的浮渣中,将它们变成碳酸盐,改善其化学和物理稳定性,从而实现这种废物的再利用和可回收性。关键字:钢渣;炉渣的碳酸化;绑架碳;钢废物的回收;生态结构。钢铁制造商简介钢生产过程中产生的炉渣大部分被丢弃。该矿渣主要由氧化钙(CAO)组成,当暴露于环境时,在这种形成的氢氧化钙中与水分反应,CA(OH)2。像CA(OH)2一样,耐药性比CAO本身较低,并且在形成时会导致炉渣膨胀,这种化学现象会导致机械耐药性下降,并使该材料用于构造。因为他们必须丢弃这些
摘要目的:分析巴西东北部市政当局初级卫生保健(PHC)的慢性疾病指标的家庭健康团队(FHS)的表现。方法:生态学研究,具有来自基层健康信息系统(SISAB),ESUS-APS(PEC)的次要数据,以及Sergipe的SãoCristóvão市政卫生秘书处的情况室。24 FHS于2022年8月/2022年4月/2022年在情况室和PEC健康状况的模块监测中进行了评估。关于SISAB,Q1 2022中考虑了Previne Brasil的VI和VII指标。结果:FHS在情况室报告了3,625次高血压和1,503名糖尿病患者的随后 - 其中有2,790(76.97%)和1,211%(80.58%)(80.58%)在PEC中具有如此活跃的状况。在联邦一级,指标VI的市政绩效为19%(分数为3,394,估计分母为18,081)和VII 13%(分子为757,并确定为5,764的分母)。但是,使用SISAB分子和情况室分母使用相同的计算方法,市政绩效将为89%(VI)和44%(VII)。结论:市政phc的随访以及该领土的人口估计有许多高血压和糖尿病,并有积极的搜索和增强护理线路的需求。但是,在伴随的高血压人中,情况室的指标表现令人满意,并在计算巴西的审查中就分母中的自我培训进行了审查。Palavras-Chave:AtençãoprimáriaàSaúde; IndionadoresdoençasCrônicas; Hipertensão;糖尿病; SaúdeDaFamília。摘要目的:分析家庭健康团队(ESF)在巴西东北地区的市政当局中的慢性疾病指标(PHC)的指标。方法:生态研究对塞吉佩比市圣克里斯托瓦市市政卫生部门的卫生信息系统(SISAB)(SISAB)(SISAB)(SISAB)(SISAB)(SISAB)和现状室进行了生态研究。24 ESF在2022年8月/2022年4月/2022年在情况室和PEC健康状况的监测模块中进行了评估。关于SISAB,考虑了2022年第1季度的Previne Brasil指标VI和VII。结果:ESF在情况室内通知了3.625例高血压和1.503例糖尿病患者的随访,其中有2.790(76.97%)和
卡里里联邦大学____________________________________________________________________________________________________________教科书是教育环境中必不可少的工具,在其中,我们找到了为教学课程矩阵设计的所有内容的基础。在动物学教学的背景下,海绵教学(Phyllo porifera)应集中于诸如组的形态,分类,系统发育,生命周期,生殖,生态和生物技术的重要性等方面。通过以全面而综合的方式解决这些主题,即使在不损害群体生物学的准确性和重要性的情况下,也可以对海绵的分类学有牢固的理解。如果有关该群体的教学还不够,则可能会限制有关这些生物的科学知识的进步。在本文中,提出了这种情况的可能后果,并讨论了减轻这种影响的策略。为此,我们分析了PNLD/2018选择的生物学教科书中与门porifera相关的内容,重点介绍了提供的信息的质量,最后,它们在与该小组的研究中所带来的后果。为了评估门的特定内容,在参考书中进行了先前的调查。分析的五本书在其内容的结构上表现出区别。其中一些在使用图像,内容的质量和其他文本中显示出缺陷。关键字:动物学教学,教科书,生物多样性,门孔,无脊椎动物,巴西。摘要。évitalCorrigir作为lacunas no ensino das esponjas para melhorar acompreensãoepromover aavançosavançosnas nas Pesquisastactonômicasebiológicasa sospociada a esse a esse grupo。教科书是教育环境中必不可少的工具,因为它为为课程设计的所有内容提供了基础。在动物学教学的背景下,海绵的教学(门孔)应强调该组的形态,分类,系统发育,生命周期,生殖,生态学和生物技术意义等方面。通过全面,整合地解决这些主题,可以在不损害该小组生物学的准确性和意义的情况下对海绵分类学有牢固的了解。对该小组的教学不足可能会阻碍有关这些生物的科学知识的发展。本文介绍了这种情况的潜在后果,并讨论了减轻这些影响的策略。为了实现这一目标,我们分析了由PNLD/2018选择的生物学教科书中与Perifera相关的内容,重点介绍了提供的信息的质量以及对小组研究的潜在后果。进行了参考书的初步调查,以评估门的特定内容。所分析的五本书显示了其内容组织的差异。一些在图像使用情况,内容质量和其他文本方面表现出缺陷。至关重要的是解决海绵教育中的缺陷,以增强与该组相关的分类学和生物学研究的理解和进步。关键字:动物学教学,教科书,生物多样性,门孔,无脊椎动物,巴西。
简介:在公司的日常活动中,对可持续性的关注变得越来越重要。在经济活动的发展中,供应链在生态足迹的形成中起着根本性的作用,因为它们与稀缺自然资源的消耗直接相关。因此,有必要加快在供应链中采用可持续的做法,以避免环境问题恶化。在这种背景下,人工智能可以成为可持续发展的盟友。研究问题和目标研究问题:利用人工智能作为供应链可持续性实践的诱导剂,目前的科学成果如何?总体目标:研究使用人工智能作为供应链可持续性实践诱导剂的科学成果的最新进展。具体目标:1)分析科学生产的演变; 2)确定研究的作者概况; 3)分析与书目耦合有关的作者情况; 4)研究共现分析理论基础由于对环境和社会负责的运营的需要,可持续性实践在供应链(SC)中的整合受到了关注。传统的生产模式建立在自然资源取之不尽、用之不竭的假设之上,但随着人们认识到自然无法满足从环境中提取的投入的不断增长的需求,这种模式发生了变化 (Srivastava, 2007)。通过技术进步和商业战略的融合,CS 的可持续发展未来前景光明 (Sarkis 等人,2019) 方法论 就其性质而言,这项研究被归类为定量研究。方法上,对2021年至2023年出版的期刊进行文献研究,目的上,探索性、描述性研究。该研究使用了从 Web of Science 数据库中提取的 204 篇文章中的二手数据。为了开展这项研究,我们使用了文献计量技术,旨在测量科学知识的生产和传播率。结果分析基于所进行的文献计量分析,可以观察到人们对使用人工智能促进CS可持续性这一主题的兴趣日益浓厚,这表明使用颠覆性技术实现公司运营现代化的重要性,从而能够将更高的效率和盈利能力与更环保的表现相协调。结论本研究对关于使用人工智能作为供应链可持续性实践的诱导因素的出版物进行了分析,强调了相关的主题轴线,以及所面临的影响和挑战。值得强调的是研究问题的相关性和当代性。为生产链配备可持续的实践满足了保护环境和自然资源的迫切需要。参考书目 Bag, S.、Wood, LC、Mangla, SK 和 Luthra, S. (2020),采购 4.0 及其对循环经济中业务流程绩效的影响,资源、保护和回收,152,104502。Rege, A. (2023)。数据分析时代人工智能对供应链的影响。国际计算机趋势与技术杂志,71(1),28-39。 Srivastava, S. K.(2007 年 3 月)。绿色供应链管理:最新的文献综述。国际管理评论杂志,9(1),53-80。