直接键合技术不断发展,以应对“更多摩尔”和“超越摩尔”的挑战。自 20 世纪 90 年代绝缘体上硅 (SOI) 技术的出现以来,CEA-Leti 已在直接键合方面积累了丰富的专业知识。从那时起,CEA-Leti 团队一直在积极创新直接键合,以拓宽应用领域。该技术基于室温下两个紧密接触的表面之间的内聚力。然后,范德华力(氢键)和毛细桥产生所需的粘附能。键合后退火将弱键转变为共价键,最终形成一块材料。随着混合键合的出现,直接键合现在不仅解决了基板制造问题,还解决了 3D 互连领域的问题。本文介绍了 CEA-Leti 开发的不同直接键合技术及其在微电子行业和研发中的应用。在文章的第一部分,简明扼要地介绍了直接键合物理学。然后,概述了最先进的键合技术,包括晶圆对晶圆 (WTW) 混合键合、芯片对晶圆 (DTW) 混合键合和 III-V 异质键合。针对合适的应用领域,比较了每种技术的优势、挑战、应用和利害关系。第三部分重点介绍 CEA-Leti 在 ECTC 2022 和 ESTC 2022 上展示的最新混合键合 D2W 结果。讨论了集成挑战以及专用设备开发的作用。最后一部分介绍了潜在的市场和相关产品,并以具有硅通孔 (TSV) 和多层堆叠的芯片为例。
2 月 5 日星期五 圣安德鲁斯徒步之旅:每周三和周五下午 1-2 点,从巴拿马城出版公司博物馆出发,地址:巴拿马城贝克大街 1134 号。免费。享受由圣安德鲁斯当地人主持的徒步之旅,他有丰富的经验,讲述您在其他任何地方都听不到或读不到的故事。马丁呈现 - 亨利·赵:下午 3 点和晚上 7:30 在巴拿马城海滩的 Ma-jestic 海滩度假村,由马丁剧院呈现。门票和详细信息请访问 Martin- Theatre.com 品酒:下午 5-7 点在巴拿马城东 11 街 93 号的 Someth-in's Cookin' 餐厅,品尝 7 到 10 种葡萄酒,为情人节做准备,还有开胃小菜来净化味蕾。预订电话:850-769-8979。大道上的百老汇歌舞表演:晚上 7:30,Emerald Coast Theatre Co.,560 Grand Blvd。位于米拉马尔海滩 Sandestin 的 Grand Boulevard。交流、交际并欣赏才华横溢的演员表演的现场音乐。在这个私密的歌舞表演环境中,与在 ECTC 舞台上大放异彩的当地和地区演员见面。门票和详细信息请访问 EmeraldCoastTheatre- .org 2 月 6 日星期六 圣安德鲁斯市场:全年每周六上午 8 点至下午 1 点,地点为 1209 Beck Avenue,游艇码头旁,虾船餐厅旁边。风雨无阻。当地手工艺品、新鲜农产品、现场音乐。详情,请在 Facebook 上搜索圣安德鲁斯市场,访问 Histor- icStAndrews.com 或致电 850-532- 8384。巴拿马城农贸市场:每周六上午 8 点至下午 1 点,地点为巴拿马城市中心哈里森大道的 Gateway Park,提供当地农产品、食品和手工制品。详情:850-481-9969 或 Facebook.com/ panamacityfarmersmarket/ GRAND LAGOON WATERFRONT FARMERS MARKET:全年周六上午 8 点至下午 1 点,位于 Thomas Drive 的 Capt. 停车场。Anderson’s,5551 N. Lagoon Drive,位于巴拿马城海滩,提供当地制造商、面包师和种植者的产品;允许携带狗。详情:850-481- 6848、WaterfrontMarkets.org 或 Facebook.com/pg/GLWFarmersMarket CARRABELLE COUNTRY MARKET:上午 9 点至下午 1 点美国东部时间每月第一和第三个星期六在卡拉贝尔的 Crooked River Lighthouse Park(1975 U.S. 98)举行。供应商提供新鲜烘焙咖啡、烘焙食品、手工面包、艺术品和摄影作品、手工制作的香脂和肥皂、手工制品和工艺品、草药、农产品和异国情调的幼苗等商品。详情请致电 850-697- 2732、carrabellelight-house@gmail.com 或 www.crookedri-verlighthouse.com 编织篮子:上午 9:30比利乔尔的原创录音和巡演乐队。美国东部时间,巴拿马城艺术中心,19 E. Fourth St.,巴拿马城。费用和详情:PCCenterForTheArts.com 儿童烹饪课:下午 1:30,Somethin's Cookin',93 E. 11th St.,巴拿马城,Hannelore Hol-land 帮助儿童制作情人节心形饼干,以及用意大利面制作有趣的食谱,包括天使发面。如需了解价格和预订(必填),请致电 850-769- 8979。马丁呈现 - 52 街之王:下午 3 点和晚上 7:30,在巴拿马城海滩 Majestic 海滩度假村,由马丁剧院主办。门票和详情请访问 MartinTheatre.com 百老汇大道歌舞表演:晚上 7:30,Emerald Coast Theatre Co.,560 Grand Blvd。位于 Grand Boulevard at Sandestin,Miramar Beach。交际、交流并欣赏才华横溢的演员表演的现场音乐。在这个私密的歌舞表演环境中,与在 ECTC 舞台上大放异彩的当地和地区演员见面。门票和详情请访问 EmeraldCoastTheatre- .org
[1] TSMC研究领域 /记忆。https://research.tsmc.com/page/memory/4.html。 [2] J. Abrell,M。Kosch和S. Rausch。 使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。 公共经济学杂志,169:172–202,2019。 [3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。 碳资源管理器:设计碳吸引数据中心的整体框架。 in proc。 Asplos,2023。 [4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://research.tsmc.com/page/memory/4.html。[2] J. Abrell,M。Kosch和S. Rausch。使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。公共经济学杂志,169:172–202,2019。[3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。碳资源管理器:设计碳吸引数据中心的整体框架。in proc。Asplos,2023。[4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。[4] Argonne国家实验室。问候。https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://greet.es.anl.gov,2022。[在线;访问30-May-20122]。[5] L. Barroso,J。Dean和U. Holzle。Web搜索一个星球:Google群集体系结构。IEEE Micro,23(2):22–28,2003。[6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。用于基于芯片的高级3D系统体系结构的主动插座技术。IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。[7] J.Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。计算机协会。Wu。在云实例中测量AI的碳强度。在2022年ACM公平,问责制和透明度会议上,FACCT '22,第1877- 1894页,纽约,纽约,纽约,2022年。[8] H. M. El-Houjeiri,A。R。Brandt和J. E. Duffy。使用现场特征估算原油生产中的温室气体排放的开源LCA工具。环境科学技术,47 11:5998–6006,2013。[9] S. Fan,S。Zahedi和B. Lee。计算冲刺游戏。Asplos,2016年。[10] X.粉丝,W.-D。韦伯和L. Barroso。仓库比例计算机的功率供应。在ISCA,2007年。 [11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。 ICT的真正气候和变革性影响:对估计,趋势和法规的批评。 模式,2(9),2021。 [12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。 神经机器翻译的缩放定律。 在国际学习表征会议上,2022年。 [13] K. Gillingham,D。Rapson和G. Wagner。 反弹效应和能源效率政策。 审查环境经济与政策,2016年10月1日。 [14] U. Gupta,M。Elgamal,G。Hills,G.Y。 Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。在ISCA,2007年。[11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。ICT的真正气候和变革性影响:对估计,趋势和法规的批评。模式,2(9),2021。[12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。神经机器翻译的缩放定律。在国际学习表征会议上,2022年。[13] K. Gillingham,D。Rapson和G. Wagner。反弹效应和能源效率政策。审查环境经济与政策,2016年10月1日。[14] U. Gupta,M。Elgamal,G。Hills,G.Y。Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。Wei,H.-H。 S. Lee,D。Brooks和C.-J。ACT:使用建筑碳建模工具设计可持续的计算机系统。在ISCA,2022年。[15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y.Wei,D。Brooks和C. J. Wu。追逐碳:计算的难以捉摸的环境足迹。在HPCA中,2021年。[16] G. Hardin。公地的悲剧。Science,162(3859):1243–1248,1968。[17] G. Hills,M。García-Bardón,G。Doornbos,D。Yakimets,P。Schuddinck,R。Baert,D。Jang,L。Mattii,S。M。M. Y. Sherazi,D.Rodopoulos,D.Rodopoulos,R.RiTzenthaler,C.S. Lee,A。V.-Y.Thean,I。Radu,A。Spessot,P。Bebacker,F。Catthoor,P。Raghavan,M。Shulaker,H.-S。 P. Wong和S. Mitra。了解数字VLSI的碳纳米管现场效应晶体管的能效益处。IEEE纳米技术交易,17(6):1259–1269,2018年9月。
缩略语 缩略语 含义 AASHTO 美国州公路与运输官员协会 AB 骨料基层 ACI 美国混凝土协会 ADL 空中沉积铅 AISC 美国钢结构协会 AISI 美国钢铁协会 AMA 考古监测区 ANSI 美国国家标准协会 APCD 空气污染控制区 API 美国石油协会 AREMA 美国铁路工程与养护协会 AQMD 空气质量管理区 AS 骨料底基层 ASME 美国机械工程师协会 ASQ 美国质量协会 ATPB 沥青处理透水基层 ATS 主动处理系统 AWG 美国线规 AWPA 美国木材保护协会 AWS a 美国焊接学会 AWWA 美国水务协会 AWIS 自动化工作区信息系统 BBS 电池备用系统 BNSF 伯灵顿北方圣达菲铁路 Cal/OSHA 加州职业安全与健康管理局 CBC 加州建筑规范 CDPH 加州公共卫生部 CIDH 钻孔浇铸 CIH 注册工业卫生师 CIP 现场浇铸 CISS 钢壳浇铸CJP 完全接缝渗透 CMU 混凝土砌体单元 CPM 关键路径法 CPL 复合塑料木材 CRCP 连续钢筋混凝土路面 CRM 碎橡胶改性剂 CSL 跨孔声波测井 CSS 水泥稳定土 CTB 水泥处理基层 CTPB 水泥处理透水基层 CVN 夏比 V 型缺口 CWI AWS 认证焊接检验师 DBE 弱势企业 DRA 争议解决顾问 DRB 争议解决委员会 DTSC 有毒物质控制部 DVBE 伤残退伍军人企业 ECTC 侵蚀控制技术委员会 EIA/ECIA 电子工业联盟/电子元件行业协会 ELAP 环境实验室认可计划 ESA 环境敏感区 ETL 电气测试实验室 f 下标 c 使用荷载下混凝土中的极端纤维压缩应力
抽象辐射能量是一个问题,随着数据速率的增加而变得复杂。此外,EMI问题经常在系统验证过程后期出现,靠近系统产品运输截止日期。这些EMI问题的解决方案非常昂贵且难以实施。因此,通过在产品设计阶段的模拟和分析来捕获潜在的EMI问题,而不是在产品开发结束时的EMC调节测量过程中捕获潜在的EMI问题。此外,EMI的仿真技术通常很复杂且耗时,也不适合宽带分析。本文介绍了一种使用3D场求解器工具来分析各种频率的辐射能量的方法。运行一个3D字段求解器模型,并在一系列频率上生成S-参数。初始溶解点用于生成辐射能量的定量结果。然后,只有初始求解是在各种频率下重新运行的,这是基于S参数结果的有趣点选择的。初始求解迅速完成,因此可以使用多个点来生成辐射能量在一系列频率中产生。然后,该方法用于分析来自一些连接器结构的EMI性能,并将其与实验室测量值进行比较。然后将各种特征比较有关它们对EMI的影响的各种特征。作者(S)传记Michael Rowlands是Molex信号完整性和连接器设计组的电气工程师。他专门从事多gigahertz频率的信号完整性。他在1998年获得了麻省理工学士的电气工程学士学位和硕士学位。毕业后,他在波士顿Teradyne担任信号完整性工程师四年。他为高达6 GHz的测试设备设计了电缆组件,电路板和互连。2002年,他在伊利诺伊州的一家初创公司工作。该公司以12.5 Gbps设计的色散薪酬微芯片用于光纤通信。他设计了电路板,以演示和验证12.5Gbps的性能,并根据系统建模进行算法改进。他在ECTC,DesignCon,IMAPS,IPC-APEX和PCB East上撰写或合着并介绍了技术论文。在2005年,作为Endicott Interconnect Technologies年的研发的一部分,他设计和分析了电路板,芯片软件包和自定义计算系统。自2009年以来,他从事Molex设计的下一代25-40Gbps I/O和板上连接器。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。 他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。 在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。 目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。
本章探讨了自动驾驶研究的当前状态,这是在自动出租车要求的背景下设定的。根据开发团队的科学出版物和自我报告提供了全面的概述,研究了环境感知,自我感知,任务成就,本地化,合作,地图使用和功能安全等方面。虽然某些方法在很大程度上依赖于GPS和MAP数据等卫星系统,但很少关注环境感知和场景的理解。尽管近年来对自动驾驶的令人印象深刻的证明,但许多挑战仍未解决,尤其是在自动驾驶公共道路时。本书可深入了解高级驾驶员辅助系统(ADA)和自动驾驶的基本原理,技术细节和应用,涵盖了ADAS系统设计,高级材料,人工智能和可靠性问题等领域。以学术和行业专家的贡献为特色,该全面参考将读者彻底了解ADA的各个方面,突出了未来的研究和发展的关键领域。作者Yan Li博士是Intel Corporation的高级职员工程师,在微电总包装相关的技术解决方案以及质量和可靠性问题方面拥有丰富的经验。在此处给出的文章文本:Li博士参与了矿物质金属和材料协会(TMS),美国金属学会(ASM)和电子设备故障分析协会(EDFAS)等专业协会。此选择可能会对道路事故产生重大影响。她自2011年以来一直是TMS年度会议的组织者,也是综合电路国际物理与失败分析技术委员会成员(IPFA)。Li博士在微电子包装中发表了20多篇论文和两份专利,并共同编辑了一本关于3D微电子包装的书。Shi博士是Lyft 5级自动驾驶部门的主要硬件可靠性工程师。他在加入Lyft之前已经在半导体和消费电子产品上工作了15多年。Shi博士担任过各种职务,包括集成工程师,高级可靠性工程师,员工质量和可靠性工程师以及过程工程师。他获得了博士学位。德克萨斯大学奥斯汀分校的物理学博士学位和中国科学技术大学物理学学士学位。先进的驾驶员辅助系统(ADA)和自动驾驶汽车(AV)的潜在影响很大。通过减少危险的驾驶行为,交通拥堵,碳排放和成本,同时改善道路安全性和独立性,ADAS和AV具有重塑运输的潜力。但是,有许多挑战,包括新技术,非自动级零件的必要性以及现有自动级组件的新任务配置文件。给定的文本似乎讨论了影响运输,环境和安全的人类活动的各个方面。要点包括:日常生活涉及休息,社会联系或工作等个人需求之间的决策。至关重要的方面是随着自动化水平的增加而需要复杂的技术。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。 拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。 图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。 尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。 由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。 随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。 感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。 典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。 由于其优点和缺点,各种传感器的组合并不罕见。 [35]。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。由于其优点和缺点,各种传感器的组合并不罕见。[35]。通过利用传感器数据和机器学习算法,对象进行检测,分类和跟踪(表2)。感知子系统的信息传递给了计划子系统,该计划子系统生成了具有特定目标位置和速度的投影路点。控制子系统然后根据此数据发送加速,制动或转向消息。这些自治子系统需要通过CPU和GPU实现的强大计算功能。各种架构在市场上共存,包括集中和分布式方法。热管理对于高级驾驶员辅助系统和由于涉及巨大的计算活动而具有自动驾驶功能至关重要。已经引入了液体冷却子系统,其中包含定制设计的冷板,并带有新的悬挂材料和过程(图6)。几家公司遇到了与热管理相关的类似技术挑战,例如冷板设计和热接口材料选择。冷板的屈曲或变形会对热性能产生负面影响,可能导致电短裤和火灾危害。系统中的制造过程或颗粒中的过多残留物会堵塞散热器并阻碍冷却液流动。实际道路上的拐角处对自动驾驶汽车构成挑战。为了减轻这些问题,公司正在广泛测试其系统,从而收集感知数据以离线训练机器学习模型。但是,此过程受到空气界面上数据传输速度的限制所阻碍。J. of CAV,2020年。J. of CAV,2020年。因此,许多组织在道路测试期间使用固态驱动器(SSD)来存储感知数据。由于SSD插入和去除的频率高,金属表面可能会磨损,从而冒着数据丢失的风险。在高级驾驶员辅助系统中使用非自动级组件和自主驾驶功能已节省了市场的时间,但引入了设计挑战。像DRAM内存之类的组件已被为这些应用所要求,但是它们在振动测试中通常会失败,从而导致系统故障。制造缺陷或材料选择不足也可能导致组件故障。在固定层损坏底盘和金属夹子在机箱上造成的隔热层损坏后,现成的单元(OT)单元失败。Shi等人的研究。[35]强调了将多个GPU并行结合到增强计算能力的潜在优势。这可以通过使用歧管整合单个水块来实现,从而简化冷却液环设计。典型的现成(OT)水块/EPDM垫圈/歧管系统由位于水块上的歧管组成,其中两个组件之间的EPDM垫圈夹在两个组件之间。拧紧后,螺钉会压缩EPDM垫圈,在歧管/螺钉上产生排斥力。但是,如图9a在温度周期式测试中,检测到歧管和水块之间的关节周围检测到冷却液泄漏。如图根据鱼骨图,主要假设表明,EPDM垫圈在高温下经历了压缩组和永久性塑性变形。由于其工作温度较低,因此这种现象对消费电子产品并不是一个关注。本研究中讨论的故障模式对自动驾驶汽车的组件和系统资格具有影响。与传统汽车平均每天驾驶不到一小时的驾驶不同,诸如机器人税之类的自动驾驶汽车的日常运营时间将大大更长。10a,这种增加的运营时间减少了达到10,000个小时数的年数。假设车速为每小时35英里(MPH),图。10b表明,随着日常运营时间的增加,自动驾驶汽车将在更少的时间内达到100,000英里。例如,如果一个机器人每天驾驶11个小时,则达到这一里程碑大约需要0.7年。此分析表明,从“数年”的角度来看,自动驾驶汽车的寿命可能比传统汽车的寿命短。这个结论与福特先前的说法保持一致,该声明预测车辆每四年将耗尽和压碎。将在以下各章中更详细地探讨基于任务配置文件的测试计划。作者旨在解决与高级驾驶员辅助系统和自动驾驶功能有关的硬件子系统设计,制造,测试和可靠性分析的出版物的有限可用性。AI和自动驾驶汽车的章节摘要:该系列审查了高级驾驶员辅助系统(ADAS)和自动驾驶汽车的应用。章节还涵盖了安全标准,方法论,挑战(边缘案例,重型尾部分配),公开可用的培训数据集,开源模拟器和验证过程。高级驾驶员辅助系统(ADA)依赖于各种技术,例如LIDAR,雷达,电化学功率系统和车载显示技术,以进行安全导航。对这些技术进行了审查,以分析其能力,挑战和应用。第1章探讨了LIDAR传感器的最新技术,涵盖了关键指标,例如检测范围,视野和眼部安全。讨论了各种激光雷达映射方法,包括机械旋转扫描仪和频率调节连续波(FMCW)LIDARS。第2章回顾了雷达技术,研究其体系结构,类别(单位,bistatic和多键雷达),波形设计以及FMCW雷达的链接预算分析。简化的示例用于说明主题。第3章侧重于ADAS车辆的电化学电源系统,讨论电池类型,化学,结构和过程。还提供了电池管理系统和故障模式分析,以及用于电池测试的行业标准的比较。第4章回顾了各种车载显示技术(LCD,TFT LCD,OLED,LED)及其架构。诸如光学性能,外观,集成和可靠性之类的要求,以及规范,功能,质量和验证等挑战。第5章探讨了数据中心使用的硬盘驱动器的当前状态和挑战。组件和材料,包括各种解决方案,以实现较高的面积数据密度,例如微波炉辅助磁记录和热辅助磁记录。工程师角色涵盖了产品生命周期的硬件可靠性的各个方面。它需要风险评估方法,例如FMEA,断层树分析和应力强度测试,加速且高度加速的生活测试技术以及用于数据分析的统计方法。此外,工程师需要执行故障分析并实施纠正措施,计算系统可靠性指标并评估可修复的系统。使用特定的硬件组件(例如相机,冷板和水块)有助于说明这些概念。章节“高级驱动器 - 辅助系统中的故障分析”深入了电子设备的分析流,讨论了各种电气测试技术,体格检查方法和材料表征程序。它涵盖了几种成像技术,包括I-V曲线跟踪和基于X射线的光谱法。本书还回顾了影响半导体套件的腐蚀机制,尤其是专注于铜和金球键。其他值得注意的来源包括B. Schlager等。此外,还简要概述了先进的驾驶员辅助系统和自动驾驶功能,以及对其他章节内容的审查。自动驾驶汽车对温室气体排放的影响,通过分析包括学术期刊和行业报告在内的各种来源进行了对自动驾驶汽车技术的最新进步的回顾。研究研究了2016年至2021年之间在Google Scholar上发表的论文,重点介绍了高级驾驶员辅助系统(ADAS),自动驾驶和硬件可靠性等主题。该评论强调了几项关键研究,其中包括N. Brese的一项研究,该研究在2019年在IEEE ECTC上提前了汽车电子技术。S. Sun等人进行了另一项值得注意的研究,他研究了MIMO雷达在2020年7月发表的IEEE Signal Processing Magazine文章中对ADA和自动驾驶的优势和挑战。该评论还涉及行业报告,例如2020年12月15日的Lyft新闻稿,该新闻稿宣布了其网络上的下一阶段的自动驾驶汽车。此外,从2020年2月11日起的LYFT报告讨论了经过Aptiv Technology提供100,000次自动驾驶骑行后吸取的经验教训。该研究提到了包括SAE J3016在内的几种标准和准则,该标准和指南提供了分类法和与驾驶汽车驾驶自动化系统有关的术语的定义。的最新传感器模型用于ADA/自动驾驶功能的虚拟测试,发表在SAE INT中。审查还检查了H. Shi等人的论文中讨论的Robo Taxis中的硬件可靠性。在2021年6月至7月的IEEE第71届电子组件和技术会议(ECTC)。另一个相关研究是由F. Chen进行的,他探索了自动驾驶汽车模块/组件的机器人税环境压力和故障模式的硬件可靠性资格。作者承认了几个人的贡献,包括Cruise的Fen Chen,他们分享了他的实验数据,以及提供语法检查的Angel Shi和Charlotte Shi。