使用图1中描述的设置用于表征此混合平台中的光子生成过程。用带宽为0.52 nm的脉冲激光器以1550.97 nm为中心,脉冲宽度为1 ps,用Erbium-poped纤维放大器(EDFA)放大,为此过程产生强泵。然后通过变量光衰减器(VOA)通过,以使功率完全可调至-60 dB,而无需更改脉冲特性。使用≥80dB的组合抑制带抑制的两个密度波长多路复用器(DWDM)过滤器,用于从进入信号和惰轮收集带宽的激光器中消除泵噪声。将它们放置在极化控制器之前,以优化插入的光,以用于设计光栅耦合器的TE极化。a 99:1梁分离器允许通过安装在探针站的一个臂上的V型槽光纤阵列来监视所测试设备的功率(DUT)。从探测站输出后,使用多通道DWDM模块驱动信号和惰轮频率并拒绝泵。然后将一个额外的单通道DWDM放在信号和怠速通道上以进行额外过滤。芯片后这种过滤还为每个通道提供了≥80dB的排斥带抑制。最后,将两个通道通过光纤网络路由到两个连接到时间间隔分析仪(TIA)的光子柱超导纳米线单光子探测器(SNSPD)。
光纤激光器引起了人们的想象,因为在短期内需要光束组合的功率高达 100kW,在未来则需要多 MW。它们近乎完美的光束质量、稳定性和多功能性,再加上增益介质的低成本,使它们成为相干组合多达 1000 个单独光纤放大器光束的理想选择。使用源自电信的光纤电路,我们可以设想全光纤激光电路和系统,它们坚固耐用、易于运输,并且可以直接管理热负荷。后一个属性来自大的表面积与体积比、光纤激光器的效率和二氧化硅的热稳定性。对于坚固的单个光纤激光发射器来说,几千瓦可能是实用可靠的最佳点,我们需要考虑光束组合以缩放功率,无论是空间、波长还是相干。相干光束组合(如在合成孔径雷达中)具有可操纵性和内置自适应光学的属性。然而,顾名思义,我们需要从每个光纤发射器以稳定的偏振光束输出相干的单频,这并不简单。本文将回顾高功率单频激光器的进展,以及该技术的预期局限性。本文还将回顾高功率脉冲光纤激光器的最新研究,以及光束组合的前景,以克服由于光纤束尺寸小而导致的脉冲能量限制