本研究引入了一种创新的机器学习框架,以提高糖尿病预测准确性和模型可解释性。该方法首先通过链式方程 (MICE) 进行多次插补,以解决缺失数据并确保完整的数据集以供分析。为了解决类别不平衡问题,采用了合成少数过采样技术 (SMOTE)。使用 Z 分数异常值检测来去除异常值,进一步提高模型的稳健性。结合灰狼优化器 (GWO) 和方差分析的混合特征选择方法混合 GWAN 优化了相关特征的选择,平衡了预测能力和模型简单性。该框架的核心是自适应增强梯度增强机 (ADGB),这是一种融合了 AdaBoost 和梯度增强机 (GBM) 优势的集成学习模型。通过 Hyperband 算法进行超参数优化可以对模型进行微调,实现 97.84% 的高预测准确率。这种综合方法不仅提高了准确性,还提高了预测模型的精度、召回率和 F1 分数。通过整合这些先进技术,该框架在早期糖尿病诊断中展现出巨大潜力,强调了集成方法在医疗数据分析中的重要性以及开发可靠诊断工具的准确、可解释模型的必要性。关键词:灰狼优化器、梯度提升机、合成少数群体、公共健康 1. 介绍
Kirk Coury 博士就读于德克萨斯理工大学,并于 1987 年从贝勒牙科学院获得牙科博士学位。一年后,他进入德克萨斯大学休斯顿健康科学中心的牙髓病住院医师项目,并在那里获得了牙髓病学证书和牙科硕士学位。1990 年 12 月,他在德克萨斯州阿马里洛开设了自己的诊所,成为 Panhandle 地区的第一位牙髓病医生。Coury 博士是美国牙髓病学委员会的文凭获得者,也是国际和美国牙医学院的研究员。他撰写过多篇论文,并经常演讲。
CD34+细胞计数在干细胞收集之前测量的分数解释了收集结果的80%(p <0.001)。根据我们的多变量模型,在干细胞收集之前测量的白细胞和CD34+细胞计数的综合作用解释了收集结果的90%。我们仅使用在干细胞收集之前测得的CD34+细胞计数开发了一个简化的预测模型(y = 0.101×β - 0.694)。基于我们的模型,CD34+细胞计数为36.6×10 6 /L足以在一次收集会话中实现目标收集结果。具有104×10⁶ /L的CD34+细胞计数,目标收集结果是在第一个收集会话中以97.5%的概率实现的。
实施机器学习来进行预测性主持人涉及多个关键步骤:从多个传感器中收集数据,预处理数据以减少降噪和同意,以确定机器健康的最相关指标,最后,构建预测模型以预测未来的失败或估算机器机械的有用寿命(RUL)。部署后,这些模型将不断监视实时数据,为维护团队提供可操作的见解,例如何时执行维护或更换零件。通过及时进行干预,预测性维护将延长计划外的停机时间,延长设备寿命并降低整体维护成本。此外,它允许更有效地分配维护资源,以确保仅在必要时为MANERY提供服务,而不是根据固定时间表进行服务。这种积极主动的方法显着实现运营效率,使机器学习驱动的预测维护成为旨在提高生产率并保持当今
本研究概述了使用智能系统进行心脏病预测。准确预测疾病在医学领域至关重要,但传统方法仅依靠医生的经验,往往缺乏准确性。为了解决这一限制,智能系统被用作传统方法的替代方案。虽然存在各种智能系统方法,但本研究重点关注三种:模糊逻辑、神经网络和基于案例的推理 (CBR)。对这些技术的准确性进行了比较,最终选择了基于案例的推理 (CBR) 进行心脏病预测。在预测阶段,心脏病数据集经过数据预处理以清理数据和数据分割以将其分为训练集和测试集。然后使用所选的智能系统根据处理后的数据预测心脏病结果。实验结果表明,基于案例的推理 (CBR) 在预测心脏病方面实现了 97.95% 的显着准确率。研究结果还显示,男性患心脏病的概率为 57.76%,女性为 42.24%。相关研究的进一步分析表明,吸烟、饮酒等因素是导致心脏病的重要因素,尤其是在男性中。
本文探讨了在未来十年中塑造云计算未来的关键趋势和预测。它研究了混合和多云环境的兴起,云服务中的AI和机器学习的集成,边缘计算革命,不断发展的安全性和合规性景观以及向可持续的云计算实践的转变。本文借鉴了行业报告和专家预测,以全面概述这些发展将如何影响各个部门的企业。本文强调了这些趋势所带来的机遇和挑战,强调组织需要调整其策略,投资新技术和技能,并在其云采用旅程中优先考虑安全和可持续性。
准确地预测足球比赛成果对于球迷,分析师,体育博彩公司和团队战略家等利益相关者来说很有价值。在这项研究中,我们通过将数值特征转换为上下文输入来探讨大语模型(LLMS)预测足球匹配结果的潜力。关键功能包括历史匹配结果,球员评分,教练评分和其他相关条件,这些条件由LLM处理以预测比赛获胜者。我们将基于LLM的预测的性能与传统机器学习(ML)模型进行了比较,包括随机森林和XGBoost。我们的发现表明,LLM与这些常规ML技术的准确性可比。此外,LLM提供了重要的优势,因为它不需要模型培训,简化实施并降低计算成本。这使LLMS成为足球比赛预测的有前途,资源有效的替代方案,为AI驱动的体育分析提供了新的机会。
摘要:销售预测对于当今的企业至关重要,因为它是改善它的关键因素。“销售预测”是一个人使用不同技术来预测即将到来的几周,几个月或几年的销售的过程。在本研究论文中,文献综述是关于不同研究人员应用的机器学习算法来预测沃尔玛的销售。不同的算法研究人员使用的是神经网络,OLS回归,XGBoost,SVM,Lasso回归,随机森林,额外的树回归,KNN和线性回归。从应用的所有算法中,额外的树回归表现良好,精度为98.20%。最后,我们比较了沃尔玛销售的随机森林,额外的树回归,XGBoost算法和KNN回归模型。Xgboost在其中排名最高,最高准确性为98.24%。这项研究证明了在这一销售预测领域中机器学习的潜力,并开辟了广泛的未来研究范围,以提高准确性。
摘要 - 近年来,机器学习已经快速增长,导致了各种应用和算法的发展。一个值得注意的应用是房价的预测,随着房地产价值不断上升,这变得越来越重要。准确的房价预测模型可以极大地帮助潜在的买家做出明智的决定。这项研究的重点是使用诸如卧室数量,房屋年龄,交通运输的可及,靠近学校的交通年龄以及附近的购物中心等特征来预测印度的房价。所提出的模型采用各种机器学习算法,包括线性回归,决策树,随机森林和支持向量回归。最终,该解决方案将使买卖双方都能更有效地谈判其优先级,从而最大程度地减少财务和时间损失。