阿曼a夫准确地确定高等教育中的高风险学生对于及时的干预至关重要。本研究提出了一种基于AI的解决方案,用于使用机器学习分类器来预测学生的绩效。使用信息增益评估选择了过去两年中208个学生记录的数据集,并进行了关键的预测因素,例如中期等级,上学期GPA和累积GPA。通过10倍的交叉验证评估了多个分类器,包括支持向量机(SVM),决策树,天真的贝叶斯,人工神经网络(ANN)和K-Nearest邻居(K-NN)。svm的表现最高,精度为85.1%,F2得分为94.0%,有效地识别出低于65%的学生(GPA <2.0)。该模型是在教育工作者的桌面应用程序中实现的,提供了班级和个人级别的预测。这个用户友好的工具使讲师能够监视绩效,预测结果并实施及时的干预措施,以支持陷入困境的学生。该研究强调了机器学习在增强学术绩效监控方面的有效性,并为AI驱动的教育工具提供了可扩展的方法。k eywords人工智能,机器学习,学生绩效预测,高等教育,基于AI的应用程序1。介绍信息和通信技术的快速发展(ICT)通过重塑教育系统,促使采用数字策略的采用以及突出数字能力的关键差距和不平等现象,对包括教育的各个部门(包括教育)产生了重大影响[1]。在高等教育机构(HEI)中,保持高教育标准并确保学生成功已成为关键的优先事项。政府和认证机构,例如阿曼学术认证机构和质量保证(OAAAQA)参与了阿曼的高等教育机构(HEI)的质量[2]。因此,监视学生绩效已成为符合这些标准并提供问责制的重要因素[3]。讲师经常面临大量的责任,这使得连续监控每个学生的学术进步并实施及时的干预措施具有挑战性[4]。依靠定期评估的传统监测方法可能无法提供支持表现不佳的学生所需的早期见解[5]。教师增加的工作量增加了对整合心理的技术解决方案的需求
农业是全球维持和经济发展的基石,是无数行业的粮食,就业和原材料的来源。但是,该行业面临着持续的挑战,其中之一就是作物疾病的流行。这些疾病不仅威胁着农作物的产量和质量,而且威胁着农民的生计和整个社区的粮食安全。在受这些问题影响最大的农作物中是木薯,这是热带和亚热带地区数百万的重要主食。木薯对恶劣条件的韧性使其成为关键的食物来源,但它易受木薯细菌疫病(CBB),木薯棕色条纹疾病(CBSD),木薯绿色mottle(CGM)和木薯马赛亚疾病(CASSAVA GREEN MOTTLE(CGM)和CASAVA MOSAIC疾病(CMD)的脆弱性。及时,准确地确定木薯疾病对于有效管理至关重要,因为早期干预可以防止广泛的爆发并减轻经济损失。传统的疾病检测方法通常取决于专家知识和手动检查,这对于小农户来说可能是耗时,昂贵且无法访问的。人工智能(AI)和机器学习(ML)的进步为这一挑战提供了有前途的解决方案,从而使自动化和准确地检测到植物疾病的大规模检测。该项目引入了一个基于深度学习的木薯疾病检测系统,利用强大的Rexnet-150模型进行图像分类。该系统被部署为使用烧瓶构建的用户友好的Web应用程序,即使对于具有最少技术专业知识的个人,也可以确保可访问性。训练有素的模型能够诊断出高精度的木薯叶条件,将其分为五类:木薯细菌疫病(CBB),木薯棕色条纹病(CBSD),木薯绿色mottle(CGM),木薯马赛克疾病(CMD)和健康。用户只需上传木薯叶的图像,该应用程序提供了即时诊断以及可操作的见解。这些见解包括特定疾病的预防措施和管理策略,使农民有能力采取及时的行动来保护其作物。除了其实际实用性之外,该项目与将技术纳入可持续农业的全球努力保持一致。通过利用AI,它可以增强疾病监测和预防,减少对手动检查的依赖,并支持农民采用积极的农业实践。该解决方案的可扩展性意味着它可以适应其他作物和地区,从而进一步扩大了其对全球农业的影响。
本研究概述了使用智能系统进行心脏病预测。准确预测疾病在医学领域至关重要,但传统方法仅依靠医生的经验,往往缺乏准确性。为了解决这一限制,智能系统被用作传统方法的替代方案。虽然存在各种智能系统方法,但本研究重点关注三种:模糊逻辑、神经网络和基于案例的推理 (CBR)。对这些技术的准确性进行了比较,最终选择了基于案例的推理 (CBR) 进行心脏病预测。在预测阶段,心脏病数据集经过数据预处理以清理数据和数据分割以将其分为训练集和测试集。然后使用所选的智能系统根据处理后的数据预测心脏病结果。实验结果表明,基于案例的推理 (CBR) 在预测心脏病方面实现了 97.95% 的显着准确率。研究结果还显示,男性患心脏病的概率为 57.76%,女性为 42.24%。相关研究的进一步分析表明,吸烟、饮酒等因素是导致心脏病的重要因素,尤其是在男性中。
本文探讨了在未来十年中塑造云计算未来的关键趋势和预测。它研究了混合和多云环境的兴起,云服务中的AI和机器学习的集成,边缘计算革命,不断发展的安全性和合规性景观以及向可持续的云计算实践的转变。本文借鉴了行业报告和专家预测,以全面概述这些发展将如何影响各个部门的企业。本文强调了这些趋势所带来的机遇和挑战,强调组织需要调整其策略,投资新技术和技能,并在其云采用旅程中优先考虑安全和可持续性。
摘要:销售预测对于当今的企业至关重要,因为它是改善它的关键因素。“销售预测”是一个人使用不同技术来预测即将到来的几周,几个月或几年的销售的过程。在本研究论文中,文献综述是关于不同研究人员应用的机器学习算法来预测沃尔玛的销售。不同的算法研究人员使用的是神经网络,OLS回归,XGBoost,SVM,Lasso回归,随机森林,额外的树回归,KNN和线性回归。从应用的所有算法中,额外的树回归表现良好,精度为98.20%。最后,我们比较了沃尔玛销售的随机森林,额外的树回归,XGBoost算法和KNN回归模型。Xgboost在其中排名最高,最高准确性为98.24%。这项研究证明了在这一销售预测领域中机器学习的潜力,并开辟了广泛的未来研究范围,以提高准确性。
摘要 - 近年来,机器学习已经快速增长,导致了各种应用和算法的发展。一个值得注意的应用是房价的预测,随着房地产价值不断上升,这变得越来越重要。准确的房价预测模型可以极大地帮助潜在的买家做出明智的决定。这项研究的重点是使用诸如卧室数量,房屋年龄,交通运输的可及,靠近学校的交通年龄以及附近的购物中心等特征来预测印度的房价。所提出的模型采用各种机器学习算法,包括线性回归,决策树,随机森林和支持向量回归。最终,该解决方案将使买卖双方都能更有效地谈判其优先级,从而最大程度地减少财务和时间损失。
机器了解和基于记录的完全预测和诊断冠状动脉疾病的技术可能是一项非凡的医疗收益,但这是改进的主要意义。在许多国家 /地区,可能缺乏心血管专业人员,并且可以通过对虚拟患者信息的医疗决策分析来建立正确且强大的早期心脏预测来解决大量误诊的实例。这是针对目的,以挑选出过多的跨性能设备,以了解用于此类诊断目的的变体。已经使用了几种使用小工具到知识的算法,这些算法可能与预测心脏病的准确性和准确性相比。每个细节的重要性得分限制为除MLP和KNN以外使用的所有算法。所有元素都是完全基于成本点来计算的,以找到提供高危险冠心病预后的人。外观发现,使用Kaggle的3段心脏数据库,基于Pro-K(KNN),选择树(DT)和随机森林(RF)RF技术算法完成了97-2%的精度和97.2%的敏感性。因此,我们观察到,可以使用一组规则的易于监督的机器可以使用最佳的准确性和最令人满意的用途来使冠心病的猜想。关键字:MLP,KNN,选择树,随机森林,心脏数据库。
几项研究探索了使用各种机器学习算法来预测铁矿石中杂质的使用。 Harsha和Prasad(2021)研究了使用深度学习技术来预测铁矿石泡沫中二氧化硅浓度的百分比,表现出显着的预测能力[1]。Zhang等。 (2024)提出了一种基于时间补偿的算法来预测铁矿石烧结中的表面缺陷,将其有效性与常见的深度学习算法进行了比较[2]。 Pural(2023)着重于开发数据驱动的软传感器,以使用机器学习算法在包含700,000多个数据点的数据集上预测铁矿石浮选浓度的硅质杂质[3]。Zhang等。(2024)提出了一种基于时间补偿的算法来预测铁矿石烧结中的表面缺陷,将其有效性与常见的深度学习算法进行了比较[2]。Pural(2023)着重于开发数据驱动的软传感器,以使用机器学习算法在包含700,000多个数据点的数据集上预测铁矿石浮选浓度的硅质杂质[3]。
摘要:糖尿病是关键疾病之一,许多人患有这种疾病。年龄,肥胖,缺乏运动,遗传性糖尿病,生活方式,不良饮食,高血压等。会引起糖尿病。患有糖尿病的人患有诸如心脏病,肾脏疾病,中风,眼睛问题,神经损伤等疾病的风险很高。目前在医院的实践是通过各种测试收集所需的糖尿病诊断信息,并根据诊断提供适当的治疗方法。大数据分析在医疗保健行业中起着重要作用。医疗保健行业有大量数据库。使用大数据分析,可以研究庞大的数据集并找到隐藏的信息,隐藏的模式,从数据中发现知识并相应地预测结果。在现有方法中,分类和预测准确性不是那么高。在本文中,我们提出了一个糖尿病预测模型,以更好地分类糖尿病,其中包括糖尿病的少数外部因素以及葡萄糖,BMI,年龄,胰岛素等常规因素。与现有数据集相比,新数据集可提高分类精度。进一步提出了旨在提高分类准确性的糖尿病预测的管道模型。I.引言医疗部门具有大量数据库。这样的数据库可能包含结构化的,半结构化或非结构化数据。考虑到当前情况,印度等主体国家(DM)已成为一种非常严重的疾病。现有大数据分析是一个过程,该过程分析了巨大的数据集并揭示隐藏的信息,隐藏的模式以从给定数据中发现知识。糖尿病性梅利氏菌(DM)被归类为非传染性疾病(NCB),许多人患有疾病。根据2017年统计数据,约有4.25亿人患有糖尿病。由于糖尿病,每年约有2-5万患者的生命。据说到2045年,这将增加到6.29亿。[1]糖尿病(DM)被分类为称为胰岛素依赖性糖尿病(IDDM)的Astype-1。人体无法产生足够的胰岛素,这种DM背后的原因,因此需要向患者注入胰岛素。类型-2也称为非胰岛素依赖性糖尿病(NIDDM)。当身体细胞无法正确使用胰岛素时,可以看到这种糖尿病的类型。-3型妊娠糖尿病,孕妇的血糖水平升高,未发现糖尿病的糖尿病会导致这种类型的糖尿病。dm具有与之相关的长期并发症。此外,糖尿病患者存在各种健康问题的高风险。一种称为预测分析的技术,结合了各种机器学习算法,数据挖掘技术和统计方法,该方法使用当前和过去的数据来找到知识并预测未来的事件。通过对医疗保健数据进行预测分析,可以做出重大决策并可以做出预测。可以使用机器学习和回归技术进行预测分析。预测分析旨在以最佳的准确性诊断疾病,增强患者护理,优化资源并改善临床结果。[1]机器学习被认为是最重要的人工智能功能之一,支持计算机系统的开发,具有从过去的经验中获取知识而无需每种情况进行编程的能力。机器学习被认为是当今情况的迫切需要,以通过支持最小缺陷来消除人类的努力。
表5。优化的决策树的性能和验证精度............. 28表6。Classification report of decision tree......................................................29 Table 7.决策树的混乱矩阵................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 29表8。优化的模型参数值和验证精度......................................................................................................................................................................................................................................................... 31