在这个现代世界中,心血管疾病是全球死亡率的主要原因。打击这种令人震惊的趋势并防止毁灭性的生命丧失,这是一种创新的解决方案,侧重于可靠性,准确性,可扩展性和成本效益。这项工作提出了一个使用人工智能处理器(LSAI48266X)和IoT设备的系统,以从MACH30100和DS18B20等传感器传输数据。该系统旨在跟踪,可视化和预测心脏病。随机森林是一种机器学习算法,可根据SPO2,心跳,温度和血压等众多参数来预测心脏病。Web应用程序是使用PHP开发的,该应用程序可以显示医院的详细信息,并与Telegram聊天机器人集成到紧急情况下进行通信。与早期方法相比,我们提出的系统以令人印象深刻的精度为95.6%和自动化系统来区分自身,以通过结合随机的森林算法和跟踪系统来防止人类生命的丧失。
摘要“多种疾病预测”项目采用机器学习方法,利用支持载体机(SVM)和逻辑回归算法,以预测各种疾病,例如糖尿病,心脏病,肾脏病,帕金森氏病和乳腺癌。主要目的是为早期疾病检测和干预提供可靠且可访问的工具。用户界面是使用简易库构建的,为用户提供了无缝的体验,以输入相关参数并获得有关其健康状况的预测。选择特定疾病后,提示用户输入必要的信息,例如病史,症状和人口统计细节。然后,应用程序通过训练有素的机器学习模型处理这些数据,以产生有关个人受到疾病影响的可能性的预测。该项目通过利用机器学习技术来解决准确疾病预测的关键需求。通过分析大型数据集并从过去的医学案例中学习,这些模型可以有效地识别指示各种疾病的模式和标记。这允许尽早确定健康风险,从而及时干预和治疗。此外,Sparlit提供的用户友好界面可增强可访问性,使个人可以轻松评估其不同疾病的风险而无需专门的技术知识。应用程序的直观设计和互动功能使其适用于广泛的用户,包括医疗保健专业人员和关心其健康的个人。总体而言,“多种疾病预测”项目展示了机器学习在医疗保健中的力量,并证明了预测性建模如何有助于早期疾病检测并改善患者的结果。通过利用高级算法和用户友好的接口,该项目旨在对预防医学领域产生重大影响。。关键字: - 机器学习,简化,SVM,逻辑回归,疾病预测,早期检测,医疗保健,预测性建模,用户界面。
摘要:预测股票价格在金融市场中至关重要,但是由于市场的动态性如何,这可能很困难。常规技术经常无法捕获这种复杂性。一种可能的方法是深度加固学习或深度Q学习(DQL)。本文研究了DQL在股票价格预测中的使用,并考虑了其优点,缺点和方法。它始于DQL的基础知识及其与财务预测的关系,然后再探索经验重播和神经网络体系结构等多种实施策略。涵盖了特定于金融市场的问题,包括模型评估和数据预处理。合成的经验数据将DQL与常规技术形成鲜明对比,证明了其有效性并概述了潜在的领域以进行进一步研究。最终,本综述旨在使从业者和学者了解DQL在股票价格预测中的有效性,从而在这一迅速发展的主题中实现了未来的发展。
又到了一年一度的这个时候,我们重新拿起数字水晶球,对未来一年做出预测。今年的预测截然不同,影响深远。和往年一样,我每年都会对全国各城市和县最流行的趋势发表看法。新年伊始,我们对政治不安全感又一次心生恐惧。虽然最近我们对数字鸿沟表示担忧,但现在我们必须面对日益扩大的文化鸿沟以及对政府及其机构日益增长的不信任。这当然导致了毫无根据的阴谋论和对科学技术的不信任惊人地增加。明年也是总统选举年,基于选举的技术受到攻击,这只会加剧文化鸿沟。公共部门的每个人,无论是个人还是职业,都会受到影响。尽管如此,以下是我的预测,我很高兴地报告,有许多领域值得乐观和发展。毫不奇怪,人工智能 (AI) 在每个领域都发挥着主导作用。
抽象的一种影响全世界许多人的慢性疾病是糖尿病性疾病。如果在早期预测该疾病,则风险和严重程度都可以显着降低。In this research, we need to predict the type 2 diabetic patients at an early stage to reduce the cost of treatment for countries because this is a long time disease we use many machine learning algorithms to find the accuracy for these diseases applied to BRFSS datasets for two years 2014 and 2015 with a different selection of features to predict the disease as decision tree, logistic regression, ADA Boost Classifier, extreme gradient boosting, Linear Discriminant Analysis, Light梯度提升机和Catboost分类器。在使用2014 BRFSS数据集应用我们的实验时,神经网络具有最高的精度,而2015 BRFSS数据集则最佳准确度模型对于Catboost分类器和极端梯度提升,其中最低模型是线性判别分析。此外,在我们的研究中,我们使用具有不同功能选择并获得高精度的相同数据集进行了比较我们的结果。关键字:慢性疾病;糖尿病性麦芽膜;机器学习;人工智能;分类
在不断升级的医疗保健费用的背景中,将大量GDP份额分配给了与健康相关的支出。本研究采用机器学习算法,包括随机森林回归,梯度增强的树木,线性回归和支持向量机,以预测健康保险成本。主要目标是授权个人根据其独特的健康属性做出有关健康覆盖的明智决定。此外,该研究旨在帮助决策者确定具有更高成本的提供者并实施目标成本维护措施。通过评估健康保险数据集上的算法性能,该研究强调了早期成本估算对指导个人选择合适覆盖范围的重要性。在满足有效管理医疗费用的紧迫需求时,这项研究的结果不仅有助于个人决策,而且为努力在优质医疗保健提供和财政责任之间取得平衡的决策者提供了宝贵的见解。在预测健康保险成本中的机器学习利用对于创建更透明,更有效的医疗保健生态系统至关重要。这项研究努力促进对成本动态的细微了解,使个人和政策制定者能够驾驶当代医疗保健景观的复杂性。
心理健康是一个人的心理健康。在个人的行为,情绪管理或思维过程中临床上有明显的破坏表明精神疾病。记住,精神疾病是需要护理和治疗的医学疾病,而不是弱点或决定的迹象。可以使用许多干预措施,例如医学,心理治疗和其他支持疗法来治疗精神疾病。估计有四分之一的人在一生中遇到某种精神疾病,精神疾病正成为一个日益严重的全球问题。在确定有危险的人可能很困难的同时,早期诊断和对精神疾病的治疗可以显着改善结果。从各种数据源预测精神疾病已经显示出机器学习和其他数据驱动策略的潜力。
摘要 中风或脑卒中是导致成年人残疾的主要原因之一。这是一种医疗紧急情况,因此尽快寻求帮助至关重要。迅速就医有助于避免问题和脑损伤。预测疾病发病率、预后和协助医生开出疾病治疗方法只是临床决策中广泛采用的众多预测方法中的几种。这种预测中风分析程序的方法是使用深度学习网络在脑疾病数据集上进行的。该模型的目标是构建一个使用卷积神经网络识别脑卒中的深度学习应用程序。还创建了三个模型来预测结果。拟议的研究使用 CT 扫描(计算机断层扫描)图像数据集来预测和分类中风。介绍 中风是全球第五大死亡原因。中风是一种非传染性感染,占所有死亡率的 11%。它是印度第四大死亡原因。医疗技术的发展使得使用机器学习预测中风的发生成为可能。机器学习算法有助于提供准确的分析和做出正确的预测。本研究使用机器学习预测了脑中风的可能性。根据所用技术的关键组成部分和获得的结果,Nave Bayes 优于其他五种分类算法,并获得了更高的准确度测量。该模型是在文本数据而不是实际大脑图像上训练的,这是一个缺点。本研究展示了六种机器学习分类方法的实施。这项研究可以扩展以纳入所有最新的机器学习技术。从 Kaggle 中挑选一个具有各种生理变量作为其属性的数据集来继续此任务。根据对这些属性的检查,做出最终预测。最初清理数据集,以便机器学习模型更容易掌握。此时,该过程涉及数据预处理。检查数据集是否有空值,并在必要时进行更新。在标签编码之后,如果需要,可以使用独热编码将字符串值转换为数字。经过数据预处理后,数据集被分为训练数据和测试数据。之后,利用新数据和多种分类技术构建模型。为了找到最精确的预测模型,需要计算并比较每种方法的准确率。当模型经过训练并正确确定后,就会生成一个 HTML 网站和一个 Flask 应用程序。在 Web 应用程序中,用户输入预测值。Flask 应用程序将 Web 应用程序与经过训练的模型连接起来。该研究经过彻底的分析后得出结论,哪种算法最适合预测中风。