1。引入工业化的发展,随后是环境污染的增加,可再生能源的能源生产和存储已成为必要[1-4]。近年来,由于许多研究人员的储能性能高[5-9],许多研究人员已经研究了超级电容器。与电池相比,这些设备具有高功率密度和良好的环状稳定性。它们的能量密度也比普通的介电电容器更高,以填补电池和电容器之间的空隙[10-12]。超级电容器分为两类:两层电容器(EDLC)和伪电容器。EDLC中的能量存储不涉及任何法拉第反应,而是通过电极/电解质界面的离子交换来完成。EDLC中使用的电极材料的一个示例可能是高比表面碳材料。取而代之的是,假能力能通过法拉第可逆反应在导电聚合物材料或金属氧化物的表面上存储能量[13-16]。过渡金属氧化物通常比碳基材料更稳定,并且比导电聚合物材料具有更高的能量密度,因此它们是超级电容器电极的良好候选者[17]。
化石燃料的耗尽以及日益严重的环境问题引起了开发高性能储能设备的极大关注。在各种储能设备中,超级电容器正在成为研究的热点,并且由于它们的巨大优势,包括高功率密度,高电荷/放电率和长期循环寿命,它们弥补了电池和常规电容器之间的不同。1 - 5通常,根据电容器来源:电容器来源:电气双层电容器(EDLCS),伪电容器和混合电容器,可以分为三类。6 - 8在EDLC中,电容源自电极和电解质界面处的纯静电电荷积累。9,电极成为影响性能的重要因素。此外,电极的性能主要取决于电极材料。因此,电极材料的选择是电容器的关键步骤。
摘要:与电解电容器相比,超级电容器每单位质量或体积可以存储多一百万倍的能量。由于其内部电阻低,它们能够驱动或吸收脉冲高电流。在过去的四分之一世纪里,超级电容器 (SC) 制造商开发了几种具有高功率密度和更长循环寿命的大规模设备系列,帮助最终用户改进其储能系统和产品。如今,有三种常见的设备系列,即 (i) 对称双层电容器 (EDLC)、(ii) 具有锂电极的混合电容器和 (iii) 基于伪电容概念的电池电容器。这篇评论文章比较了这些系列,并概述了电动汽车 (EV)、微电网和消费电子产品中的几种最新应用。
静电双层电容器 (EDLC) 使用碳电极或衍生物,其静电双层电容远高于电化学伪电容,从而实现导电电极表面与电解质界面处亥姆霍兹双层中的电荷分离。电荷分离约为几埃(0.3-0.8 纳米),比传统电容器小得多。电化学伪电容器使用金属氧化物或导电聚合物电极,除了双层电容外,还具有大量电化学伪电容。伪电容是通过法拉第电子电荷转移与氧化还原反应、插层或电吸附实现的。混合电容器(例如锂离子电容器)使用具有不同特性的电极:一种主要表现出静电电容,另一种主要表现出电化学电容。[2]
1.1 简要历史概述 ................................................................................................ 16 1.2 原理和电荷存储机制 ................................................................................ 18 1.2.1 电双层电容器 (EDLC) ................................................................ 20 1.2.2 赝电容器 ...................................................................................... 22 1.2.3 非对称超级电容器(电容式非对称超级电容器与混合超级电容器) ............................................................................. 24 1.3 超级电容器的电极材料 ............................................................................. 26 1.3.1 碳基材料 ............................................................................................. 27 1.3.2 过渡金属氧化物/氢氧化物 (TMOs/TMHOs) ............................................................. 32 1.4 电极材料的合成方法 ............................................................................................. 40 1.4.1 化学气相沉积 (CVD) ............................................................................. 40 1.4.2 电聚合/电沉积 ............................................................................. 41 1.4.3 水热/溶剂热法 ...................................................................................... 41 1.4.4 共沉淀法 .............................................................................................. 42 1.5 电极材料的电化学测量 .............................................................................. 42 1.5.1 超级电容器电极材料的指标 ...................................................................... 42 1.5.2 电极材料的电化学测量 ...................................................................... 43 1.6 论文目标和提纲 ............................................................................................. 50 1.7 参考文献 ............................................................................................................. 53 第 2 章 ............................................................................................................................. 80 用于混合超级电容器的层状双氢氧化物 (LDH) ............................................................. 80
尽管 LIB 技术被认为对于我们能源系统中的能源存储至关重要,但它存在一些固有的限制,例如成本高、寿命短、安全特性差和环境危害 3,这促使人们研究替代能源存储技术。过去十年中,出现了几种替代能源存储技术,其中一些基于生物衍生材料。它们有望实现廉价且环保的能源存储。4 人们开发了许多概念来利用木质纤维素材料作为能源存储电极的关键成分,从利用木质素作为二次电池中的氧化还原活性阴极材料 5 到利用纤维素的天然结合特性作为电双层电容器 (EDLC) 中的关键结构成分 6。这些生物基电池和超级电容器(有时也称为纸电池)的设计和开发都具有环保特性,包括材料来源、生产、操作以及使用寿命结束时的处置/回收规范。 7 此外,与传统的电极制造方法(围绕在金属集流体上涂覆电极浆料的方法)相比,8 纸电极还具有更高的生产率的内在潜力,因为纸基技术可以大规模和快速的线速生产并转化为产品。
由于人们对便携式能源设备的兴趣日益浓厚,储能变得比以往任何时候都更加重要。二元过渡金属氧化物 (BTMO) 因其出色的结构稳定性、改进的电子电导率和更大的可逆容量而作为潜在的新型储能材料受到了广泛关注。[1] 近年来,人们进行了大量研究来调查和开发柔性储能系统,主要目的是将柔性电子产品应用于柔性显示器、便携式电子产品、电子传感器、电源备份、移动电话、笔记本电脑等设备。现有的可充电储能市场主要由具有高灵活性、高能量密度和高功率密度的电化学储能系统的设计和生产主导。[2] 由于其快速的充放电速率、高功率密度和出色的循环性,超级电容器 (SC) 是各种应用中最有前途且发展最快的存储设备。[3]为了部分替代化石燃料,过去 10 年来,人们付出了巨大努力来利用可再生能源,如热能、太阳能、风能和潮汐能。这些交替可再生能源的广泛使用必须借助强大的储能系统来实现。[4][5][6] 超级电容器因其快速的充电和放电速度、可逆性、安全性、延长的循环寿命、高功率密度和环保性而引起了广泛关注。[7] 超级电容器优于其他储能技术,包括长寿命、快速充电和放电、高功率密度、快速充电存储和高能量密度。这些特性使超级电容器成为燃料电池、传统可充电电池和电容器的补充。[8] 超级电容器类别包括由各种储能技术产生的电双层电容器 (EDLC) 和伪电容器。EDLC 通过电极/电解质界面处的静电吸附/解吸来存储电荷。由于碳纳米管 (CNT)、石墨烯、碳气凝胶和活性炭具有较大的比表面积和优异的导电性,因此经常用于 EDLC。[9]研究人员希望创造具有高功率输出、长寿命和快速充电时间的设备,他们对开发可持续的电化学能量转换和存储解决方案很感兴趣,以满足日常生活中日益增长的电力需求。[10]由于其增强氧化还原化学的能力,BTMO 引起了人们对超级电容器进步的极大兴趣。[3]由于二元金属氧化物具有很高的理论比电容,它们作为超级电容器电极材料受到了广泛关注,例如 ZnFe2O4/rGO 复合材料,[11] NiCo 2 O 4 ,[12] CoV 2 O 6 ,[13] BiVO 4 /PANI 复合材料[14] 和 NiCo 2 S 4 。[15]。与单一过渡金属氧化物相比,BTMO 通常具有更高的比表面积、不同的氧化还原电位和优异的电导率,这些特性有利于实现良好的电化学性能。[16,17,18]。由于其优异的导电性和大的表面积,最近的研究集中在使用二元金属氧化物材料或二元金属氧化物纳米复合材料作为超级电容器应用的电极材料,如图 1 所示。制造二元金属氧化物的方法有很多,包括水热法、溶剂热法、微波辅助法、超声波处理和绿色技术。在这些选项中,大多数用于电容器的 BTMO 或 BTMO 纳米复合材料都是通过化学氧化和热反应过程沉淀制成的。这里我们介绍了用于电化学超级电容器电极的 BTMOs 和 BTMOs 纳米复合材料研究的最新进展。
基于过渡金属氧化物[4]的Docapators。但是,这两种类型的超级电容器都是完美的。对于基于碳的EDLC,尽管它可以提供更高的功率密度,短充电和放电过程以及良好的稳定性,但能量密度限制在电极/电解质界面处有限的电荷分离以及活性材料的可用表面积[5]。对于依靠金属氧化物(仅用于MNO 2)的假性数据电容器,它具有较高的理论能力,自然丰度和环境能力,但循环寿命短和低功率密度[6]。因此,将碳基材料和MNO 2的复合材料是最佳选择。许多努力已经在这一方面进行了。例如,基于复合材料的超级电容器,例如石墨烯/MNO 2/碳纳米管(CNTS)[7],激光标记的石墨烯MNO 2 [8],MNO 2 @CNTS/CNTS [9] [9],都可以实现更高的能力,而大多数可以为其提供更大的功能,但可能会构成大多数的应用程序,因此,他们的范围很高,因此[10]的范围很高。因此,找到具有较高兼容性和低成本的碳材料作为复合材料的基础很重要。生物量前体,可以产生具有分层多孔结构和高表面积的活性碳(AC)的自然元素,满足了先前对自然界中的友好性和丰富性的要求[11]。如今,水热合成和电沉积法是制备生物碳/MNO 2复合材料的主要方法[12]。但是,这些方法不适合大规模生产。为了进一步降低生产成本大规模商业应用,一种可行的方法是将纳米结构化的MNO 2固定在红薯衍生的碳框架(SPCF)中,通过低体温溶液的生长技术,以生成SPCF,以产生与MNO 2 Nano 2 Nanopartects同步负载的SPCF。生成的复合材料SPCF/MNO 2显示出具有高特异性的电容性能(0.5 A/G时为309 f/g),并且具有良好的放电速率能力(在20 A/G时为94 f/g)。这些特性证明了SPCF/MNO 2复合材料作为超级电容器的竞争电极材料。