1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
定量脑电图和脑电波定量脑电图,有时也称为脑映射,是通过数字技术测量头皮表面的电模式,主要反映皮质电活动或“脑电波”。脑电波以各种频率出现。有些很快,有些很慢。这些脑电图波段的经典名称是 delta、theta、alpha 和 beta。神经反馈是一种生物反馈训练,它使用脑电图 (EEG) 作为控制视觉、听觉或触觉反馈的主要工具。这种反馈用于在大脑中产生学习。这种学习可以提高大脑的适应性和自我调节能力。然而,重要的是,您要了解并同意这种训练过程。一些研究证明,该疗法可有效治疗多种疾病,如注意力缺陷多动障碍 (ADD/ADHD)、焦虑症、抑郁症、自闭症、轻度脑外伤、强迫症等,但其中许多领域仍在进行进一步研究。如果您需要,我可以提供迄今为止的研究书目,或者您可以查阅 www.isnr.org (国际神经反馈与研究学会的网站)以获取全面的神经反馈书目。神经反馈训练是通过使用一种称为脑电图 (EEG) 的灵敏电子仪器来完成的,该仪器可测量个人脑电活动的频率和强度,并立即将此信息发送到高速计算机。这些脑电波信号几乎立即被计算机处理,并以视觉和听觉反馈的形式呈现给个人。然后,临床医生使用复杂的计算机程序帮助患者学习如何使用这种“神经反馈”来识别和更好地调节他们的脑电波模式。对于儿童,计算机程序有时会以游戏的形式出现。通过持续的反馈、指导和练习,患者学会产生所需的脑电波模式。起初,脑电波活动的变化是短暂而短暂的,然而,在相对较短的时间内,新的模式会在与更好的表现和整体健康相关的频率范围内变得更加牢固。一旦患者练习得足够熟练,能够集中注意力并重新调整他们的脑电波模式,训练就结束了。您对神经反馈训练的个人反应或结果无法预测。根据我们的经验,每个人的旅程和结果各不相同,您对该计划的承诺是最重要的方面。我们对您的承诺是提供最好的培训,并公开、诚实地解决您的问题和疑虑。重要的是,我们会定期监测进度并根据需要重新评估,以确定是否应该继续培训。为此,我们将要求您完成频繁的评估,以衡量我们将要跟踪的目标症状。您能否尽可能始终如一地进行这些评估至关重要,因为它提供了有关培训如何影响您的信息,这对您至关重要
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负担。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
摘要 - 癫痫是一种常见的神经系统疾病,其特征是在全球范围内影响多达7,000万人的癫痫发作。在生命的头十年中,每150名儿童中大约有一个被诊断出患有癫痫病。脑电图是诊断癫痫发作和其他脑部疾病的重要工具。但是,脑电图的专家视觉分析很耗时。除了减少专家注释时间外,自动癫痫发作检测方法是帮助专家分析脑电图的强大工具。对小儿脑电图中癫痫发作的自动检测的研究已被提出。深度学习算法通常用于小儿癫痫发作检测方法;但是,它们在计算上很昂贵,并且需要很长时间才能开发。可以使用转移学习来解决此问题。在这项研究中,我们在小儿EEG的多个通道上开发了一种基于转移学习的癫痫发作检测方法。公开可用的CHB-MIT EEG数据集用于构建我们的方法。数据集分为训练(n = 14),验证(n = 4)和测试(n = 6)。从10 s EEG信号产生的具有5 s重叠的频谱图用作三个预训练的传输学习模型(RESNET50,VGG16和InceptionV3)的输入。我们小心翼翼地将孩子分成培训或测试集中,以确保测试集是独立的。基于脑电图测试集,该方法具有85.41%的精度,85.94%的召回率和85.49%的精度。此方法有可能协助研究人员和临床医生对小儿脑电图中癫痫发作的自动分析。
我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负荷。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
摘要 — 随着神经工程技术的快速发展,社会对数字心理健康的需求也迅速上升。虽然社会需要利用基于可靠神经科学证据的尖端技术,但准确性和易用性的权衡严重分裂了学术界和工业界。在这里,我们提供模拟和经验证据来揭示头皮上脑电图电极的位置和数量如何影响捕获头皮范围独立成分 (IC) 的准确性。基于从 64 通道脑电图电极获得的 IC 的逆权重头皮地形,对现有的七个脑电图耳机的数量和位置进行了空间相似性分析。结果显示,随着通道数量和位置的增加,相似性呈现出独特的 S 形恶化。我们提供了一个有用的计算模型,用于量化特定耳机的假设质量。我们的量化方法为学术可靠性和社会需求之间的竞争提供了和解,这是 BCI(脑机接口)应用中的一个基本方面。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。