摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
脑电图 (EEG) 信号的分析总是涉及量化问题;这些问题可能涉及主频率的精确值以及从同时或不同时间记录的两个对称推导信号之间的相似性。在这些例子中,有一个问题只能通过对 EEG 信号进行测量来解决。没有这样的措施,EEG 评估仍然是主观的,很难导致逻辑系统化。经典的 EEG 评估总是涉及借助简单的标尺测量频率和/或幅度。这种简单方法的局限性很大,特别是当必须评估大量 EEG 数据并且强烈感受到数据缩减的需要时,以及当提出相当复杂的问题时,例如 EEG 信号的变化是否与内部或外部因素有关,以及不同推导中发生的 EEG 现象有多同步。要清楚地回答这些问题,需要某种形式的 EEG 分析。然而,这种分析不仅是一个量化问题,还涉及模式识别的元素。每一位脑电图医师都知道,对于诸如尖峰、尖波或其他异常模式等脑电图现象,有时很难引用精确的测量值;经验丰富的专家只能通过“目测”来检测它们。这些类型的问题可以通过模式识别分析技术解决,其原理是必须测量脑电图现象的特征。在特征提取阶段之后,将现象分类为不同的组。因此,脑电图分析不仅意味着简单的量化,还包括特征提取和分类。脑电图分析的主要目的是通过数字或图形形式的客观数据支持脑电图医师的评估。然而,EEG 分析可以走得更远,实际上可以扩展脑电图师的能力,为他们提供新的工具,使他们能够执行诸如癫痫患者长时间 EEG 的定量分析以及睡眠和精神药理学研究等困难任务。分析方法的选择主要取决于应用的目标,但也必须考虑预算限制。制定适当的策略取决于一些实际情况,例如分析结果是否必须实时在线提供,还是可以离线呈现。在过去,前一种要求会带来相当大的问题,只有采用一种相当简单的分析形式才能解决;新计算机技术的发展提供了更可接受的解决方案。另一种
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
我们还建议您填写自闭症友好问卷,以准备就诊。如果您在填写 MyChart 中的表格时遇到困难,那么您可以从我们的网站下载纸质副本,并在预约时随身携带。详情请查看二维码。
在实验的第一个版本中,参与者默默地阅读屏幕上的单词(一次),然后是视觉固定 - 交叉提示,以重复他们的脑海中。在某些试验中,接下来是提示他们想象的是五个(生成性内部语音任务)不同的单词。所有视觉刺激均出现0.8-1.0秒,然后是持续0.8-1.0秒的空白屏幕。我们收集了来自3名男性参与者的MEG(Elekta Neuromag 306-渠道)和EEG(EasterCap 64通道)数据,每个参与者分别为6、2和2个会话。由此产生的会话包括大约325个读数,325个重复的内部语音和250个生成性的语音试验,几乎平均分配在5个单词之间(单词选择是随机的)。在实验的第二版中,显示了四个连续的十字架,而是以1秒的间隔显示了连续的十字架,以便参与者重复4次单词。,我们从男性参与者那里收集了1次,从另一名男性参与者那里收集了1次MEG和脑电图数据,其中1个MEG和1个单独的EEG会话,以及第三名男性参与者的1个MEG和10个MEG和10个单独的EEG会话。这些课程中的每一个都包含大约173次阅读,692个重复的内部语音和640个生成性内部语音试验。
摘要 - 癫痫是一种常见的神经系统疾病,其特征是在全球范围内影响多达7,000万人的癫痫发作。在生命的头十年中,每150名儿童中大约有一个被诊断出患有癫痫病。脑电图是诊断癫痫发作和其他脑部疾病的重要工具。但是,脑电图的专家视觉分析很耗时。除了减少专家注释时间外,自动癫痫发作检测方法是帮助专家分析脑电图的强大工具。对小儿脑电图中癫痫发作的自动检测的研究已被提出。深度学习算法通常用于小儿癫痫发作检测方法;但是,它们在计算上很昂贵,并且需要很长时间才能开发。可以使用转移学习来解决此问题。在这项研究中,我们在小儿EEG的多个通道上开发了一种基于转移学习的癫痫发作检测方法。公开可用的CHB-MIT EEG数据集用于构建我们的方法。数据集分为训练(n = 14),验证(n = 4)和测试(n = 6)。从10 s EEG信号产生的具有5 s重叠的频谱图用作三个预训练的传输学习模型(RESNET50,VGG16和InceptionV3)的输入。我们小心翼翼地将孩子分成培训或测试集中,以确保测试集是独立的。基于脑电图测试集,该方法具有85.41%的精度,85.94%的召回率和85.49%的精度。此方法有可能协助研究人员和临床医生对小儿脑电图中癫痫发作的自动分析。
Objective: We investigated brain cortical activity alterations, using a resting-state 256-channel high- density EEG (hd-EEG), in Alzheimer's (AD) and Parkinson's (PD) disease subjects with mild cognitive impairment (MCI) and correlations between quantitative spectral EEG parameters and the global cogni- tive status assessed by Montreal Cognitive Assessment (MoCA) 分数。方法:15个AD-MCI,11个PD-MCI和十个年龄匹配的健康控制(HC)进行了HD-EEG记录和神经心理学评估。脑脊液生物标志物分析以获得良好的特征组。EEG光谱特征,并研究了三组之间的差异以及与MOCA的相关性。结果:与对照组相比,AD-MCI和PD-MCI的α2/alpha1比的α2/alpha1比显着降低。在PD-MCI中观察到明显更高的theta和较低的β/theta比。MOCA评分与theta功率以及alpha2和beta功率以及alpha2/alpha1和alpha/theta比率直接相关。结论:这项研究强调了AD-MCI和PD-MCI患者的脑电图模式的显着差异,并指出了EEG参数在两种神经退行性疾病中可能的替代标志物的作用。明显的能力:除了完善的生物标志物外,我们的发现还可以支持神经退行性疾病中认知功能障碍的早期检测,并可以帮助监测疾病的进展和治疗反应。
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。