定量脑电图和脑电波定量脑电图,有时也称为脑映射,是通过数字技术测量头皮表面的电模式,主要反映皮质电活动或“脑电波”。脑电波以各种频率出现。有些很快,有些很慢。这些脑电图波段的经典名称是 delta、theta、alpha 和 beta。神经反馈是一种生物反馈训练,它使用脑电图 (EEG) 作为控制视觉、听觉或触觉反馈的主要工具。这种反馈用于在大脑中产生学习。这种学习可以提高大脑的适应性和自我调节能力。然而,重要的是,您要了解并同意这种训练过程。一些研究证明,该疗法可有效治疗多种疾病,如注意力缺陷多动障碍 (ADD/ADHD)、焦虑症、抑郁症、自闭症、轻度脑外伤、强迫症等,但其中许多领域仍在进行进一步研究。如果您需要,我可以提供迄今为止的研究书目,或者您可以查阅 www.isnr.org (国际神经反馈与研究学会的网站)以获取全面的神经反馈书目。神经反馈训练是通过使用一种称为脑电图 (EEG) 的灵敏电子仪器来完成的,该仪器可测量个人脑电活动的频率和强度,并立即将此信息发送到高速计算机。这些脑电波信号几乎立即被计算机处理,并以视觉和听觉反馈的形式呈现给个人。然后,临床医生使用复杂的计算机程序帮助患者学习如何使用这种“神经反馈”来识别和更好地调节他们的脑电波模式。对于儿童,计算机程序有时会以游戏的形式出现。通过持续的反馈、指导和练习,患者学会产生所需的脑电波模式。起初,脑电波活动的变化是短暂而短暂的,然而,在相对较短的时间内,新的模式会在与更好的表现和整体健康相关的频率范围内变得更加牢固。一旦患者练习得足够熟练,能够集中注意力并重新调整他们的脑电波模式,训练就结束了。您对神经反馈训练的个人反应或结果无法预测。根据我们的经验,每个人的旅程和结果各不相同,您对该计划的承诺是最重要的方面。我们对您的承诺是提供最好的培训,并公开、诚实地解决您的问题和疑虑。重要的是,我们会定期监测进度并根据需要重新评估,以确定是否应该继续培训。为此,我们将要求您完成频繁的评估,以衡量我们将要跟踪的目标症状。您能否尽可能始终如一地进行这些评估至关重要,因为它提供了有关培训如何影响您的信息,这对您至关重要
我们还建议您填写自闭症友好问卷,以准备就诊。如果您在填写 MyChart 中的表格时遇到困难,那么您可以从我们的网站下载纸质副本,并在预约时随身携带。详情请查看二维码。
一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
脑电图(EEG)广泛用于神经科学和临床研究中,用于分析大脑活性。虽然诸如EEG-NET之类的深度学习模型在解码EEG信号方面已经取得了成功,但它们经常在数据复杂性,受试者间的可变性和噪声鲁棒性方面挣扎。Quantum机器学习(QML)的最新进步通过利用量子计算的独特属性来增强脑电图分析的新机会。在这项研究中,我们扩展了先前提出的量子eegnet(QEEGNET),这是一种将量子层融合到EEGNET中的混合神经网络,以研究其在多个EEG数据集中的泛化能力。我们的评估涵盖了各种各样的认知和运动任务数据集,在不同的学习情况下评估了Qeegnet的表现。实验结果表明,尽管QEEGNET的表现具有竞争性能并在某些数据集中保持稳健性,但其对传统深度学习方法的改进仍然不一致。这些发现表明,混合量子古典体系结构需要进行更优化,以充分利用脑电图处理中的量子优势。尽管有这些局限性,但我们的研究为QML在脑电图研究中的适用性提供了新的见解,并强调了未来进步必须解决的挑战。
本文说明了脑电图(EEG)数据的两个有效源定位算法的开发,旨在增强实时大脑信号重建,同时解决传统方法的计算挑战。准确的EEG源定位对于在认知神经科学,神经康复和脑部计算机界面(BCIS)中的应用至关重要。为了在精确的源方向检测和改进的信号重建方面取得重大进展,我们介绍了加速的线性约束最小方差(ALCMV)波束形成工具箱和加速的大脑源方向检测(AORI)工具箱。ALCMV算法通过利用递归协方差矩阵计算来加快EEG源重建,而与常规方法相比,AORI将源方向检测从三个维度简化了66%。使用模拟和实际脑电图数据,我们证明了这些算法保持高精度,方向误差低于0.2%,并且信号重建精度在2%以内。这些发现表明,所提出的工具箱代表了脑电图源定位的效率和速度的重大进步,使其非常适合实时神经技术应用。
众所周知,公众讨论硕士的论文“确定恢复性脑部计算机界面的虚拟体现的脑电图生物标志物”,由许可的Daniela Alexandra Carvalho Esteves提出,将于3月7日下午4点举行。
脑电图(EEG)是一种用于记录脑活动的非侵入性电生理方法,使研究人员能够研究脑功能(8)。情感研究领域中的一种研究涉及通过定量分析EEG诱导情绪并记录大脑活动的变化(9)。研究人格,情绪和脑电图之间的关系的研究主要关注这三个因素中的两个(10-12),并且对人格在情绪诱导过程中的作用在大脑活动中的作用有限。使用召回或想象力(13),声音(14、15),图片(16、17)或视频剪辑(VC)(18、19)的一些研究,用于引起情绪反应的方法有所不同,这些研究被认为是对日常生活情况的自然和反思。此外,一些研究使用了少量样本量(20,21),仅包括均质参与者组(22),并且常常未能考虑性别差异(20)。这些方法上的差异导致整个研究的结果不一致(23,24)。
使用在实验室设置之外记录的脑电图构建机器学习模型,需要对嘈杂的数据和随机丢失的渠道进行健全的方法。在使用稀疏的脑电图蒙太奇(1-6个频道)时,这种需求尤其重要,通常在消费级或移动脑电图设备中遇到。通常在EEG端到端训练的经典机器学习模型通常都经过设计或测试,以实现腐败的鲁棒性,尤其是针对随机缺失的渠道。 一些研究提出了使用具有缺失通道的数据的策略,但是当使用稀疏蒙太奇并且计算能力受到限制时(例如,可穿戴设备,手机),这些方法是不切实际的。 为了解决这个问题,我们提出了动态空间过滤(DSF),这是一个多头注意模块,可以在神经网络的第一层之前插入,以通过学习专注于良好的频道并忽略不良的频道来处理缺失的EEG通道。 我们在公共脑电图数据上测试了DSF,其中包含约4,000张录音,并在模拟的频道腐败和约100个私人数据集中进行了大约100张自然损坏的移动脑电图记录。 我们提出的方法在没有噪声时达到了与基线模型相同的性能,但是当存在显着的通道损坏时,优于基准的精度高达29.4%。 此外,DSF输出是可以解释的,可以实时监视频道的重要性。 这种方法有可能使脑电图分析在挑战性的环境中,因为通道腐败阻碍了大脑信号的阅读。通常在EEG端到端训练的经典机器学习模型通常都经过设计或测试,以实现腐败的鲁棒性,尤其是针对随机缺失的渠道。一些研究提出了使用具有缺失通道的数据的策略,但是当使用稀疏蒙太奇并且计算能力受到限制时(例如,可穿戴设备,手机),这些方法是不切实际的。为了解决这个问题,我们提出了动态空间过滤(DSF),这是一个多头注意模块,可以在神经网络的第一层之前插入,以通过学习专注于良好的频道并忽略不良的频道来处理缺失的EEG通道。我们在公共脑电图数据上测试了DSF,其中包含约4,000张录音,并在模拟的频道腐败和约100个私人数据集中进行了大约100张自然损坏的移动脑电图记录。我们提出的方法在没有噪声时达到了与基线模型相同的性能,但是当存在显着的通道损坏时,优于基准的精度高达29.4%。此外,DSF输出是可以解释的,可以实时监视频道的重要性。这种方法有可能使脑电图分析在挑战性的环境中,因为通道腐败阻碍了大脑信号的阅读。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。