传记 1999 年,Ir. G. (Gertjan) Koster 教授获得博士学位,论文题目为“脉冲激光沉积人工层状复合氧化物”。同年,他移居美国,加入斯坦福大学 Geballe 先进材料实验室的 Kapitulnik-Geballe-Beasley (KGB) 小组。2007 年,他加入了特温特大学 MESA+ 纳米技术研究所的无机材料科学小组,自 2019 年 12 月起担任该研究所的正教授。2014 年,他成为温哥华 QMI-UBC 的客座教授,自 2018 年起,他担任斯洛文尼亚 Joseph Stephan 研究所先进材料系 K9 的客座教授。他的研究重点是原子工程复合(纳米)材料的结构-性能关系,特别是薄膜陶瓷氧化物。对于薄膜合成,他开发了第一个时间分辨的 RHEED 系统,在脉冲激光沉积期间以高达 100 Pa 的高压运行。这项工作促成了一家初创公司的成立,他是该公司的顾问和讲师。目前的研究包括人造材料的生长和研究、缩小尺寸(纳米级)材料的物理学、金属-绝缘体转变和原位光谱表征。应用领域包括绿色 ICT 的功能材料、神经形态计算、氧化物与 CMOS 的集成、使用 X 射线光谱或 STEM-EELS(例如电池、催化)进行氧化物界面操作研究的模型系统。其他经验:
该项目的目标是创建首创的超快电子泵、超快电子探针光谱仪,并作为测试案例,探测和动态调整强关联超原子材料中库仑相互作用的作用。全电子方法与传统的超快激光光谱法相比取得了重大进展,因为它能够更完整地测量介电函数的纵向分量。光学(横向)介电函数控制基于光的相互作用,而纵向介电函数控制电子型库仑相互作用,例如导致键形成、电荷传输和筛选的相互作用,这些相互作用涉及从分子到复杂的多体现象(如超导性和关联绝缘体)的所有方面。超快电子泵可以复制光激发,但与光子不同,它可以产生有限动量激发,以引导电子穿过材料结或势能表面。或者,如果电子泵与样品平行,则可以在不激发更高水平状态的情况下调节屏蔽和键合 - 类似于通过将 2D 材料分层以获得奇异量子相来静态控制屏蔽和关联。超快电子能量损失谱 (EELS) 探针随后将所得激发分解为其原子贡献,或者它可以跟踪电子、太阳能材料和电池中普遍存在的多层结的有限动量激发。超快电子泵、超快电子探针平台可能对开发新电化学、创建瞬态量子相以及测量量子设备和超快纳米级电子相关的电子相互作用的量子控制产生深远影响。
图2将Ni原子插入石墨烯晶格。a-b)HAADF-STEM图像显示了两个不同的宏伟概述的样品概述,显示了石墨烯表面形成的3-5 nm ni岛。在Ni岛之间还观察到单个Ni原子。c)石墨烯表面上的ni岛,经Ni L 23鳗鱼核心损失边缘证实。d- e)说明了梁拖动技术,其中电子束位于源材料上(d中的红色箭头的尾巴)),并拖动到原始的石墨烯(d中的红色箭头头))。此过程在ni原子附加到的石墨烯中创建点缺陷时,吐出了Ni源原子。iNSET在e)中显示了带有原子模型覆盖的主HAADF-STEM图像的傅立叶过滤版本,显示了Ni原子的位置。Ni原子位置表示单个和DI-VACACES的职业。f)几分钟的电子束暴露后,掺杂剂的较高分辨率图像。观察到的结构的原子模型被覆盖。g)-i)通过在Ni岛和原始石墨烯上扫描电子束来插入Ni原子的一个例子。最初,石墨烯的斑块没有掺杂剂;由于产生缺陷并将Ni原子从相邻的Ni岛散射到石墨烯上,Ni原子附着在缺陷位点上并掺入晶格中。随着越来越多的C原子从晶格中敲打,孔开始形成,Ni原子装饰边缘,i)。图像E-F)和H-I)使用PyCroscopicy中的原理分析过滤。60,61
摘要 - 我们建议使用光子晶体表面发射激光器(PC-SELS)提出并演示自由空间光学(FSO)。与其他类型的常规半导体激光器不同,例如伸向边缘激光器(EEL)和垂直腔表面发射激光器(VCSEL),PCSELS,PCSELS在同一时间内实现了更大的区域单模式相干激光,并且这种独特的功能具有高功率(> WATT)和无镜头的操作。迄今为止,这些优点已被认为正在改变游戏,尤其是在光检测和范围(LIDAR)和激光处理应用程序中。在这项工作中,我们表明FSO通信也可以从PCSEL的这些优势中受益;更具体地,包括低功率半导体激光器,光学镜头和基于纤维的放大器的传统发射器可以用单个PCSEL代替。由于纤维放大器通常由笨重的组件组成,并且转化率较低,因此PCSEL可以提供更多的空间和节能解决方案。此外,直接从大区块单模PCSEL获得的窄光束发散角还可以消除发射机侧透镜系统的需求。为了实验验证这些潜在的优势,我们根据PCSELS进行了FSO传输实验,并使用500- m PCSEL在1.1 m上成功传输了480-MHz和864-MHz正交频次频施加频型(OFDM)信号(OFDM)信号。我们认为,PCSEL在FSO通信中打开了新的可能性和选择。
TEM 是研究电子设备纳米级特征的重要工具。TEM 基于散射的对比度在确定材料的物理结构方面表现出色,并且通过 EDS 和 EELS 等光谱附件可以精确确定设备中原子的组成和排列。结合原位功能,TEM 可以精确映射设备在运行和缺陷形成过程中的物理结构变化。但是,在许多情况下,设备的功能或故障是小规模电子变化的结果,这些变化在变化成为病态之前不会呈现为可检测的物理信号。为了在 TEM 中检测这些电子变化,必须采用与电子结构直接相关的对比度的互补成像。在 TEM 中获得电子对比度的一项技术是电子束感应电流 (EBIC) 成像,其中由光束在样品中产生的电流在 STEM 中逐像素映射。自 20 世纪 60 年代以来 [1],EBIC 电流产生的“标准”模式是在局部电场中分离电子-空穴对 (EHP)。最近,展示了一种新的 EBIC 模式,其中电流由束流诱导二次电子 (SE) 发射在样品中产生的空穴产生[2]。这种 SE 发射 EBIC (SEEBIC) 模式不需要局部电场的存在,通常比标准 EBIC 的电流小得多,并且能够实现更高分辨率的成像[3]。在基于 TEM 的技术中,SEEBIC 独一无二,还能产生与样品中局部电导率直接相关的对比度[4],即使在操作设备中也是如此[5]。在这里,我们讨论了 STEM EBIC 电导率映射技术,并提供了它在被动成像和原位实验中的几个应用示例。图 1 显示了 SEEBIC 电阻映射的简单演示。该设备由一条 GeSbTe(GST)条带组成,该条带横跨两个在薄 SiN 膜上图案化的 TiN 电极。图 1 中的 STEM EBIC 图像包含标准 EBIC 和 SEEBIC 对比度。如图所示,当电子束入射到 TiN/GST 界面时,肖特基势垒处的电场将 EHP 分开,空穴在每个界面处朝 GST 移动,在连接到 EBIC 放大器的右侧电极上产生暗对比度,在接地的左侧电极上也产生暗对比度。在这些界面之外,SEEBIC 对比度与左侧(接地)电极的电阻成正比 [4]。靠近 EBIC 电极(即,与接地电极相比,EBIC 电极的电阻更小)的 SE 发射产生的空穴更有可能通过该电极到达地,从而产生更亮的(空穴)电流。 SEEBIC 在右侧(EBIC)电极上最亮,由于非晶态GST的电阻率均匀,SEEBIC 在整个GST条带上稳定减小,在左侧电极上最暗[6]。
1 scanning electron microscopy reveals How plasma differentially ablates biopolymers and modifies surface characteristics of wood wodal laabar 1, Dr da Huo 2, Dr Philip David Evans 3, Arash Jamali 4 1 Laboratory of Reactivity and Solid Chemistry (LRCS), CNRS UMR7314, University of Picardy Jules Verne, Amiens, France, 2 Laboratory of反应性和固体化学(LRC),CNRS UMR7314,Picardy Jules University jules Verne,法国,法国,法国3号,3木科学系,不列颠哥伦比亚大学,加拿大温哥华,4个电子显微镜平台,Picardy Jules Veresne,Amiens,Amiens,Amiens,France 2 2 2 2,bt [2 2 2,b-BT] (1,2.3-三唑-4-基)吡啶]模式。niamh o'shea 1 1 1 1化学和三位一体生物医学学院,都柏林三一学院,都柏林,爱尔兰,爱尔兰2号琥珀中心,克兰恩,都柏林三一学院,都柏林,爱尔兰3纳米伯斯和纳米结构和纳米结构,vs₂,ws₂和mos₂,莫斯·巴尔·萨德·贝尔·萨德·贝尔德,啤酒。以色列舍娃4人体液中的4蛋白成像,以了解阿尔茨海默氏病的进展彼得·尼尔玛拉(Peter Nirmalraj)1,托马斯·施耐德(Thomas Schneider)先生2,安斯加斯·施耐德(Thomas Schneider)先生,安斯加尔·费尔贝克(Ansgar Felbecker)2 1 1 empa,苏黎世瑞士,苏黎世瑞士,2 kssg,2 kssg,2 kssg,st kssg,st gallen,st gallen,switzerland 5钻石量子量的量子,以降级为量子,以量子的量化量子,以量子的量化量子,以量子的量子降低了活性,该量子量有现年量子的固定量。 Elias-llumbet,Aldona Mzyk夫人,Claudia Reyes San Martin女士,Nuan Lin夫人,Romana Schirhagl 1大学,大学医学中心Groningen,Groningen,荷兰6各向异性3-D-D DIRAC,用于设计Terahertz Sensing Nanotennas Kelvin J.部门。A. Ooi 1 1 Xiamen University Malaysia, Sepang, Malaysia 7 EELS Compton scattering and the electronic structure of twisted WS2 bi-layers Alina Talmantaite 1 , Yaoshu Xie 2 , Assael Cohen 3 , Pranab Mohapatra 3 , Ariel Ismach 3 , Teruyasu Mizoguchi 2 , Stewart Clark 1 , Budhika Mendis 1 1 Dept of物理学,达勒姆大学,英国,2工业科学研究所,日本东京大学,3 3。材料科学与工程,以色列,以色列8的材料科学与工程学作用,语音子和等离子体非弹性散射在bragg衍射束强度上的作用Budhika Mendis 1 1 1 1物理学,英国达勒姆大学,UK 9电化学液化液化和INTORERY SERVENION INTRERIGHT IN INTRORIGH INTRERIGHTZ时Z ZHIYUUAN INTRONIDER SERVICATION INTRORIAN LITHIUM INTERICAL和INTORRIPHAN INTORRIPAL INTORERIG香港城市大学海洋污染实验室,香港10开发电子显微镜的生物学样本制备方法,使用三明治冰冻技术Masashi Yamaguchi 1,Azusa tokahasi-nakaguchi博士
使用动物模型的生物医学研究已有一百多年了,实际上,人类和动物健康的每个医学突破都是动物研究的直接结果。动物在研究中的作用对于开发新的,更有效的方法来诊断和治疗影响人类和动物的疾病。我们的研究人员是动物福利的坚定支持者,并将其在生物医学研究中的动物视为特权。他们有义务确保所有动物的福祉严格遵守最高标准,并根据联邦和州法律,法规指南和人道原则,并根据实验室动物护理和养蜂领域的最新信息和发现不断地更新动物护理。我们的研究人员致力于尽可能提炼,减少和更换研究中的动物,并使用替代方法(细胞和组织培养,计算机模拟等)而不是进行动物研究之前或之前进行动物研究。为什么在生物医学研究中需要动物?动物在生物学上与人类非常相似,实际上,小鼠与我们共享98%以上的DNA!此外,动物也容易受到与人类相同的健康问题的影响 - 癌症,糖尿病,心脏病等。的生命周期比人类短,可以在整个生命周期和几代人的整个生命周期中进行研究,这是了解疾病过程以及如何与整体生物生物系统相互作用的关键因素。此外,科学家可以轻松控制动物周围的环境(饮食,温度,照明),这对人类很难。重要的是要强调,美国95%的生物医学研究所必需的动物是啮齿动物 - 尤其是供实验室使用的大鼠和小鼠 - 动物只是更大的生物医学研究过程的一部分。因为到目前为止还没有发现任何可以代替生活,呼吸,整个器官系统具有肺和循环结构的复杂功能,就像人类中的动物一样,动物继续在帮助研究人员测试潜在的新药和医疗治疗方面起着至关重要的作用引起潜力。此外,美国联邦法律要求在允许进行任何人类研究之前,进行非人类动物研究以显示安全性和有效性。我们不仅可以从这项研究和测试中受益,而且现在通常在兽医诊所中使用数百种用于人类使用的药物和治疗方法,帮助动物寿命更长,更健康。生物医学研究中使用了哪些类型的动物?涉及生物医学研究的绝大多数动物是啮齿动物,超过95%。一种较小且多样化的动物也为折磨人和动物的疾病的研究提供了非常有用的模型。猫,狗和灵长类动物是最常使用的物种,这是一个普遍的误解。其中包括斑马鱼,舰队,电鳗,鸟类,兔子,豚鼠,绵羊,青蛙,猪,猪,鸟,狗,猫,猫,灵长类动物等物种等动物。在美国生物医学研究所需的所有动物中,只有1%是狗,猫或灵长类动物。研究后,大多数猫是狗被采用到永远的房屋。
1-Mon 274 Elena I Zavala评估了7月8日星期一在遗传祖先的法医分析的准确性,以超越种族和血统的人类同伙:迈向基因组学的关系思维。2-MON 812 Alex Diaz-Papkovich的拓扑数据分析与生物库数据中逐个状态之间的连接在7月8日,星期一8月8日,人类同伙之外的种族和祖先聚类:基因组学的关系思维。3-Mon 98在Denisova Cave的Alexandre Gilardet古代DNA筛选,以探索BOS/BOS混合物7月8日星期一探索混合物的进化效果。4-MON 137 NILOOFAR NILOO ALAEI KAKHKI差异降低渗透在邦特混合区域中阐明了7月8日星期一初期的早期遗传屏障的基因,探索了混合物的进化影响。5-MON 156 THOMAS L SCHMIDT GLOBAL,异步在7月8日星期一8月8日星期一在埃德斯埃及埃及蚊子中的多种杀虫剂抗性基因扫描,探索了混合物的进化效应。6-MON 260 Linda Hagberg不同的生殖隔离度量反映了7月8日星期一的物种形成的不同阶段,探索了混合物的进化效应。7-MON 282 DASHIELL J MASSEY将机制与祖先种群中祖先分类的结局区分开来,7月8日星期一探索了混合物的进化效应。8-mon 284妮可·弗利(Nicole Foley)在7月8日星期一在胎盘哺乳动物中复杂物种形成期间的系统基因信号和重组率的共同进化,探讨了混合物的进化效应。9-Mon 447 RamGonzález-Buenfil追踪混合物在墨西哥生物库中选择签名中的影响。7月8日星期一探索混合物的进化影响。10-MON 468 Alaina L Brenner非人类灵长类动物模型,用于人类的渗入和遗传混合物7月8日,星期一,探讨了混合的进化效应。11-MON 754 TSHR基因中的Lauren Hennelly Divergent Ancestry与7月8日星期一在狗驯化期间季节性繁殖的变化有关,探讨了混合物的进化效应。12-MON 779瓦伦蒂娜·布尔斯卡亚·多布津斯基·穆勒(Valentina Burskaia dobzhansky-Muller)不兼容和自适应intodressions促进了贝加尔湖两领域的爆炸性物种,7月8日星期一,探索了混合物的进化影响。13-MON 953 NIKITA TIKHOMIROV基因组稳定性超过6500万年,促进了7月8日星期一8月8日星期一,在多倍体Potamogeton中促进了种间特异性杂交,探索了混合物的进化效应。14-MON 965 NEMO Valentin Robles探索了7月8日星期一8月8日星期一探索剑尾tail(Xiphophorus)的最新进化,探索了混合物的进化效应。15-MON 979 LAURA ALEJANDRA NAJERA CORTAZAR CORTAZAR CORTAZAR生态基因组结构在Baja California半岛和墨西哥西部的Myotis蝙蝠复合体7月8日星期一7月8日星期一探索了混合物的进化影响。16-MON 1024 Kasper Munch在狒狒中的混合不兼容性的选择表明,Haldane的时间尺度类似于7月8日星期一8月8日星期一,探索了混合物的进化效应。17-MON 1100 Yuridia selene posadasgarcía对复杂性状和疾病的遗传作用在7月8日星期一在墨西哥生物库中的不同大陆祖先的各个段相似,7月8日星期一,探索了混合物的进化影响。18-MON 85亚历山大·斯塔尔(Alexander L Starr)简单,一般测试,用于加速进化和积极选择,7月8日星期一,人类在基因组时代的人类进化。19-MON 112 DAE-SOO KIM KIM多样化的多种模式的可转座元件表达式在恒河猴表现出的组织跨组织表现出来,并可能调节基因组时代的7月8日相邻Gmonday的基因表达。20-Mon 131伊莎贝拉·阿尔维姆(Isabela Alvim)揭示了古代人类蛋白对现代人类的3D基因组相互作用,免疫途径和基因表达的基因组影响。21-Mon 165 Alan Izarraras-Gomez使用局部家谱在7月8日星期一在基因组时代的人类进化进行了适应性效应的分布。22-MON 181 ULISESHERNándezMartíndel露露有害突变的积累:弱的上毒和补偿性有益突变的作用和基因组时代的人类进化。23-MON 245 ANDERS POULSEN CHARMOUH估计基因组时代7月8日星期一的PACBIO HIFI数据中的基因转化道的长度和速率。24-MON 253朱利亚·费拉雷蒂(Giulia Ferraretti)建立了整合的分析管道,以探索现代人类种群在7月8日星期一在基因组时代的人类进化而发展的复杂自适应特征的遗传结构。25-MON 351 Hossameldin loay的选择作用于人类谱系中的编码序列。 7月8日星期一,基因组时代的人类进化。 26-MON 365 LAURA L COLBRAN全球自然选择的全球模式在基因组时代的人类进化。 7月8日星期一,基因组时代的人类进化。25-MON 351 Hossameldin loay的选择作用于人类谱系中的编码序列。7月8日星期一,基因组时代的人类进化。26-MON 365 LAURA L COLBRAN全球自然选择的全球模式在基因组时代的人类进化。7月8日星期一,基因组时代的人类进化。27-MON 407 ELISE KERDONCUFF 50,000年的印度进化历史:7月8日星期一,来自2,700个整个基因组序列的见解,在基因组时代的人类进化。28-MON 441 CHARIKLIIA KARAGEORGIOU AMY1基因重复启动了淀粉酶基因座,用于自适应进化,因为农业在7月8日星期一在基因组时代的人类进化。29-MON 442 MARIKO ISSHIKI遗传适应和人口统计学历史,在稻米驯化时期,在7月8日星期一,基因组时代的人类进化。30-Mon 445 Bridget Chak从觅食到耕作:追踪农业采用对适应和选择的影响,使用全基因组测序7月8日,星期一,基因组时代的人类进化。31-MON 506 NATHAN CRAMER空间基因组量表和人类种系突变景观的决定因素,7月8日,星期一,基因组时代的人类进化。32-MON 532 JIWON LEE在人类基因组中,大量的小说翻译开放式阅读框在基因组时代的人类基因组中中性地进化。33-MON 586 sayaka chiku在人CYP1A2基因中特定SNP是否有种群分化?34-MON 610 JOHANNE ADAM遗传适应亚洲人类对其环境的遗传适应于7月8日,星期一,在基因组时代的人类进化。35-Mon 659 Gabriela Procopio Leite探索了基因组时代的7月8日星期一在人类基因组中的基因家族大小及其相关的假基因的景观。36-Mon 718 Risa L. iwasaki对日本人口的SLC8A1地区最近选择的特征调查了7月8日星期一的基因组时代的人类进化。37-MON 795何塞(Jose)一个城市阿拉贡的基因组历史,斯里兰卡的阿迪瓦西和僧伽罗人种群在基因组时代的人类进化。38-MON 807 UJANI HAZRA揭示了非洲男子在基因组时代的7月8日星期一在非洲男性中雄激素脱发的遗传结构和进化根。39-MON 815 Inez derkx在7月8日星期一8月8日星期一,基因组时代的人类进化。40-MON 821 XINRU ZHANG动态速率和猿型端粒至核基因组中核苷酸取代的模式:性别染色体在7月8日星期一在基因组时代的人类进化的实质性作用。41-MON 938 MICHAEL E GOLDBERG在Short Tandem中的中断动力学的动态动力学在7月8日星期一重复了基因组时代的人类进化。42-Mon 962 Yaen Chen比较尼安德特人的渗入地图,揭示了算法,人群和假设之间的实质异质性,并在基因组时代的7月8日星期一的人类进化。43-Mon 1006 Marybeth Baumgartner建模基因调节机制,促进了人类大脑皮层在基因组时代的人类进化。44-MON 1046 ANA VICTORIA LEON APODACA调查了纯合性和人类身高变化之间的关系,超过35,000年,超过35,000年,在7月8日星期一8月8日,基因组时代的人类进化。45-MON 1065 ALOUETTE ZHANG通过连锁不平衡统计DZ探索选择性扫描:模拟和经验研究7月8日,星期一,基因组时代的人类进化。7月8日星期一开放研讨会46-MON 1082 Rodelmar Ocampo精细的遗传结构和自然选择巴基斯坦族裔群体内和整个基因组时代的人类进化。47-MON 1090 BREANNA TAKACS研究了早期神经发育在人脑进化中的作用,在7月8日星期一,人类在基因组时代的人类进化。48-MON 1131 YAOXI HE多基因适应导致7月8日星期一在基因组时代的人类进化中,藏族人的生殖适应性更高。49-MON 174 TARAS K OLEKSYK 300个来自乌克兰和罗马尼亚边界的人的全基因组,7月8日,星期一,人类遗传变异性在pangenomic时代。50-Mon 757 Carolina de Lima Adam Tandem Tales:7月8日,星期一,猿类基因组中的串联重复序列比较分析人类遗传变异性。51-MON 443 EMILY E. PUCKETT空间和时间分析确定了7月8日星期一棕色和美国黑熊之间的两个浸润事件,而不仅仅是Ne-More:SMC从生态学到系统发育的新应用。52-Mon 50 Kaylee E Christensen Dissecting an ancient stress resistance trait syndrome in the compost yeast Kluyveromyces marxianus Monday 8 July Open Symposium 53-Mon 51 Kazuhiro Satomura Molecular phylogenetic tree of a group of species with distant genetic distance using Orthopteran insects Monday 8 July Open Symposium 54-Mon 53 Shuya ZHANG 7月8日星期一,南美安第斯山脉的玉米进化考古学学家开放了55-Mon 79 Jordan Douglas,当时分支和进化紧密地耦合于7月8日星期一8月8日星期一开放56-MON 80 STEPHAN BAEHR CRISPR,即使在GRNA的情况下也是诱变的。7月8日星期一开放座谈会57-MON 109基督教Quintero琼脂霉菌种类中环氧化物生物合成基因的进化历史,7月8日,星期一,7月8日,星期一,开放58-MON 126狂热基因和等位基因的特定表达式在非洲弱电气差异的特定表达中,在7月8日在7月8日的电动信号差异59-59-59-MON of discrete phenotypic plasticity in a gene regulatory network model Monday 8 July Open Symposium 60-Mon 134 Bing Su Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during human evolution Monday 8 July Open Symposium 61-Mon 136 Jonathan Fenn Patterns of miRNA presence and absence in mammals have implications for placental phenotypes Monday 8 July Open研讨会62-MON 140 NADIA AUBIN-HORTH创建和使用开放的教育资源教授生物学,以改善7月8日,星期一8月8日,星期一,开放研讨会63-MON 144 IKURI ALVAREZ-MAYA开发生物信息知识的开发,以分析整个基因组测序数据的分析Mycobacter Imberistium MyCobacter tuberiss 14 7月4日8月4日7月8日。 Gabriela Castellanos-Morales基于转录组参考的SNP呼吁在没有参考基因组进行入侵基因组学研究的情况下替代SNP注释。7月8日,星期一,开放研讨会76-MON 346 HYE RI PARK遗传遗传的影响对Macaca fascicularis的从头突变模式的影响。7月8日,星期一开放研讨会65-MON 163 MOMIM AHMED线粒体举报人:在7月8日星期一在Sponge Symbiosis中揭示一个隐藏的第三个伴侣,7月8日,星期一,在7月8日星期一开放了66-MON 190 NICO BREMER,NICO BREMER的可能性是在序言中出现独特基因的可能性,以至于序言是7七月的序言(周六),这是七月份的基因,这是一个七月份的基因(周六)。 228 HelenaSocorroHernández-Rosales A. ludens(双翅目:Tephritidae)的初步遗传分化,这是由于其最近的地理和主机扩展,导致7月8日星期一的商业攻击,7月8日星期一开放式座谈会68-MON 68-MON 235 EUKIYAZAKI DINOTOM研讨会69-MON 247 JUAN C OPAZO的进化和新型TRPV1剪接变体的功能表征起源于7月8日,星期一8月8日,星期一,catarhine Primates的祖先开放了70-Mon 270-Mon 270-Mon 277 Elsa Herminia QuezadaRodríguezQuezadaRodríguez在Gene condemention newers interiast in gene newers interiast in gene newerts interiastion 5 Thaliana餐厅日7月8日开放研讨会71-MON 307 MISHA GUPTA探索实验室酵母中的健身景观,7月8日星期一8月8日,星期一,开放研讨会72-MON 309 FABIA URSULA BATTISTUZI BATTISTUZI低复杂性区域跨越生命之树:多样性或正义噪音的来源?开放研讨会65-MON 163 MOMIM AHMED线粒体举报人:在7月8日星期一在Sponge Symbiosis中揭示一个隐藏的第三个伴侣,7月8日,星期一,在7月8日星期一开放了66-MON 190 NICO BREMER,NICO BREMER的可能性是在序言中出现独特基因的可能性,以至于序言是7七月的序言(周六),这是七月份的基因,这是一个七月份的基因(周六)。 228 HelenaSocorroHernández-Rosales A. ludens(双翅目:Tephritidae)的初步遗传分化,这是由于其最近的地理和主机扩展,导致7月8日星期一的商业攻击,7月8日星期一开放式座谈会68-MON 68-MON 235 EUKIYAZAKI DINOTOM研讨会69-MON 247 JUAN C OPAZO的进化和新型TRPV1剪接变体的功能表征起源于7月8日,星期一8月8日,星期一,catarhine Primates的祖先开放了70-Mon 270-Mon 270-Mon 277 Elsa Herminia QuezadaRodríguezQuezadaRodríguez在Gene condemention newers interiast in gene newers interiast in gene newerts interiastion 5 Thaliana餐厅日7月8日开放研讨会71-MON 307 MISHA GUPTA探索实验室酵母中的健身景观,7月8日星期一8月8日,星期一,开放研讨会72-MON 309 FABIA URSULA BATTISTUZI BATTISTUZI低复杂性区域跨越生命之树:多样性或正义噪音的来源?Monday 8 July Open Symposium 73-Mon 317 José Norberto García Miranda Challenging the Gram-Positive/Gram-Negative Dichotomy: Discovery of Gram-Negative Monoderm Bacteria Monday 8 July Open Symposium 74-Mon 326 Hyeongwoo Choi Adaptive Genomic Signatures and Evolutionary Mechanisms in Anguillid Eels Monday 8 July Open Symposium 75-MON 340 PAIGE J. MARONI潜水更深入:揭开“稀有”深海两亲动物Alicella Gigantea的分布。