基因组编辑技术为多年生黑麦草(一种全球重要的牧草和草坪草种)的遗传改良提供了强有力的工具。关于多年生黑麦草基因编辑的唯一出版物使用基因枪进行植物转化,并使用基于双启动子的 CRISPR/Cas9 系统进行编辑。然而,它们的编辑效率很低(5.9% 或只产生了一株基因编辑植物)。为了测试玉米泛素 1 (ZmUbi1) 启动子在多年生黑麦草基因编辑中的适用性,我们制作了 ZmUbi1 启动子:RUBY 转基因植物。我们观察到 ZmUbi1 启动子在芽再生之前的愈伤组织中活跃,这表明该启动子适用于多年生黑麦草中的 Cas9 和 sgRNA 表达,以高效生产双等位基因突变植物。然后,我们使用 ZmUbi1 启动子来控制多年生黑麦草中的 Cas9 和 sgRNA 表达。Cas9 和 sgRNA 序列之间的核酶切割靶位点允许在转录后产生功能性 Cas9 mRNA 和 sgRNA。使用农杆菌进行遗传转化,我们观察到在多年生黑麦草中编辑 PHYTOENE DESATURASE 基因的效率为 29%。DNA 测序分析表明,大多数 pds 植物含有双等位基因突变。这些结果表明,由 ZmUbi1 启动子控制的单个 Cas9 和 sgRNA 转录单元的表达为产生多年生黑麦草的双等位基因突变体提供了一种高效的系统,并且也适用于其他相关草种。
肺癌是全球最常见的恶性肿瘤之一,起源于气管、支气管和肺(Bade and Dela Cruz,2020),其发病率和死亡率居所有肿瘤之首,严重威胁患者的健康和生活质量(Romaszko and Doboszy ń ska,2018)。肺癌主要分为小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)两类,其中NSCLC占85%(Nasim et al.,2019)。由于早期诊断率低,大多数患者在诊断时已处于晚期,局部晚期或远处转移患者的5年生存率仅为26%和4%(The Lancet,2019)。患者通常有咳嗽、胸闷、胸痛、呼吸困难等常见症状(Hoy等,2019)。目前,含铂和多西他赛的化疗药物是NSCLC的标准化疗方案(Sakaguchi等,2020)。
1)网络安全:鼓励律师意识到使用人工智能工具可能带来的风险,包括第三方获取敏感信息;2)教育和法律实践:建议将人工智能主题纳入律师和法官的专业教育中,并建议确定或增加律师的继续法律教育(CLE)时间,以包括与法律实践相关的人工智能和技术问题;3)立法、监管和法律考虑:建议审查和监督与法律实践中的人工智能相关的立法、法规和判例法,并考虑制定以人工智能为重点的立法提案;4)道德和负责任使用指南:制定关于生成性人工智能使用的建议,以解决遵守律师道德和广告法规,并就法律实践中人工智能的道德使用提供指导 5) 获取和公平:提议支持法律援助提供者获取人工智能技术和潜在技术,以增强个人获得司法系统的机会 6) 隐私和数据保护:审查隐私法对人工智能的影响,并提出在人工智能应用中处理个人数据的最佳实践 7) 人工智能峰会和协作努力:建议组织人工智能峰会,以促进利益相关者之间的知识共享和协作
摘要:建筑物的供暖和制冷系统占总能耗的重要组成部分。欧盟的指令和承诺激励建筑业主和能源和建筑行业的相关利益相关者通过最大限度地利用可再生能源、信息和通信技术和自动化系统,实现净零能耗建筑。然而,建筑物翻新、就地使用可再生能源生产以及在中小型建筑中安装昂贵的信息和通信技术基础设施和自动化系统的高投资成本是欧盟建筑指令在中小型建筑中广泛采用的主要障碍。另一方面,在不同建筑物之间共享计算和数据存储资源的概念可以成为实现智能建筑和智能城市的替代方法,其中主要控制权位于服务器上。与其他专注于在建筑物或具有本地处理资源和数据存储的独立建筑物中实施 AI 技术的研究不同,本研究使用企业服务器来控制三种建筑类型的供暖系统,并研究在统一的节能平台中控制现有建筑的潜在好处。本研究的主要发现是,尽管 COVID-19 措施要求建筑物频繁通风,即使在使用旧式供暖系统的情况下,纳入所提系统的 AI 算法仍实现了约 20-40% 的显著节能,无论建筑类型、建筑功能和供暖系统类型如何。
提高能源利用率的效率是节省能源和减少排放的重要方法。本文从中国收集了3164个样本的数据,并使用SBM-DEA方法来计算能量利用率的效率。然后,我们根据中国的新能源示威城市(NEDC)政策来构建DID模型,以测试地方政府干预对能源利用率效率(EUE)的影响。可以得出以下结论。首先,NEDC策略仍然可以显着改善EUE。其次,异质性分析表明,无论是对于传统的工业基地还是非传统的工业基础,NEDC政策对增强城市欧洲都是有益的。对非传统工业基础的影响更大。NEDC政策可以在东部城市和较高的经济发展领域中显着促进EUE。相比之下,它对中西部和西方城市或经济发展贫困地区的EUE的影响是微不足道的。最后,机制分析表明,NEDC政策可以通过调整工业结构调整和绿色创新来促进能源利用率的效率。
摘要 — 本信介绍了一种用于多通道宽带神经信号记录的能量和面积高效的交流耦合前端。所提出的单元使用基于反相器的电容耦合低噪声放大器调节局部场和动作电位,然后是每通道 10-b 异步 SAR ADC。单位长度电容器的调整可最大限度地减少 ADC 面积并放宽放大器增益,从而可以集成小型耦合电容器。与最先进的产品相比,65 纳米 CMOS 原型的面积缩小了 4 倍,能量面积效率提高了 3 倍,占位面积为 164 µ m × 40 µ m,能量面积性能系数为 0.78 mm 2 × fJ/conv-step。在 1 Hz 至 10 kHz 带宽内测得的 0.65 µ W 功耗和 3.1 µ V rms 输入参考噪声对应的噪声效率因子为 0.97。
2田纳西州盖恩斯维尔,佛罗里达州盖恩斯维尔大学, 2植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系102植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系10
氢是由于其高能量密度和零碳排放而导致可再生能源存储和运输的有前途的候选者。其实际应用面临与安全,有效的存储和释放系统有关的挑战。本评论文章研究了用于氢储存的高级纳米结构材料,包括金属乙酰基和氰化物配合物,B,N掺杂的γ-graphyne纳米管(γ-GNT),磷化锂双螺旋和NI-Formated Concobon-Cobon-Coarbon基簇。密度功能理论(DFT)计算用于分析结合能,热力学稳定性和吸附机制。ni装饰的C 12 N 12纳米群体表现出增强的储存能力,具有良好的N-(μ-Ni)-n构造的最高八个H 2分子结合。磷化锂双螺旋在一个稳定的半导体框架内显示出9.6 wt%氢气的潜力。在硼掺杂位点使用OLI 2的γ -GNT的功能显着提高了存储潜力,从而实现了实用应用的最佳氢结合能。此外,通过贵重气体插入稳定的金属乙酰基和氰化物配合物显示热力学上有利的氢吸附。这些结果突出了这些功能化纳米结构的潜力,可以实现高容量,可逆的氢存储。γ-GNT提供高表面积和可调电子特性,非常适合通过杂原子掺杂增强物理吸附。磷化锂双螺旋促进了通过不饱和锂中心的库巴斯样化学吸附。这些材料代表这项研究中的纳米结构,例如γ-图纳米管(γ-GNT),磷化锂双螺旋,金属乙酰基和氰化物络合物以及基于NI染色的碳基簇,是基于其具有互补氢充气机制的能力,包括物理学和化学能力。金属乙酰基和氰化物配合物通过电荷转移和共轭框架稳定氢吸附,而NI装饰的簇结合了极化诱导的物理吸附。
CRISPR / Cas9 系统是一种基因组工程技术,已应用于基因的插入/缺失突变以及靶基因的缺失和替换。在这里,我们描述了人类 X 染色体上 PIGA 基因座上的成对 gRNA 缺失,范围从 17 kb 到 2 Mb。我们发现缺失大小和缺失效率之间没有明显的线性相关性,拓扑关联域对缺失频率没有实质性影响。利用这种精确的缺失技术,我们设计了一系列设计缺失细胞系,包括一种缺失两个 X 染色体反选择(负选择)标记 PIGA 和 HPRT1 的细胞系,以及带有每个单独缺失的其他细胞系。PIGA 编码糖基磷脂酰肌醇 (GPI) 锚生物合成装置的组成部分。 PIGA 基因反选择标记具有独特的特点,包括现有的单细胞水平 PIGA 功能和功能丧失检测,以及存在一种有效的反选择剂 proaerolysin,我们经常用它来筛选表达 PIGA 的细胞。这些设计细胞系可以作为具有多种选择标记的通用平台,可能特别适用于大规模基因组工程项目,例如 Genome Project-Write (GP-write)。
舱外机动装置 (EMU) 内的现行废物管理系统由一次性尿布——最大吸收服 (MAG) 组成,它可以在长达 8 小时的舱外活动 (EVA) 期间收集尿液和粪便。长时间接触废物会导致卫生相关的医疗事件,包括尿路感染和胃肠道不适。从历史上看,在使用 MAG 之前,宇航员在开始体力消耗大的太空行走之前会限制食物摄入量或食用低残渣饮食,从而降低他们的工作绩效指数 (WPI) 并带来健康风险。此外,目前的 0.95 升宇航服内饮料袋 (IDB) 无法为更频繁、更远距离的太空行走提供足够的水,这更有可能出现需要延长离开航天器时间的应急情况。每磅货物运往太空的高昂运输成本和资源稀缺性加剧了这些挑战,凸显了节水废物管理的必要性。本文介绍了威尔康奈尔医学院梅森实验室开发的一种新型宇航员宇航服内尿液收集和过滤系统,该系统可以解决这些卫生和补水问题。该装置通过外部导管收集宇航员的尿液,并使用正向和反渗透 (FO-RO) 将其过滤成饮用水,创造可持续的卫生循环水经济,增进宇航员的健康。这项研究旨在使用改进的 MAG 实现 85% 的尿液收集率。改进的 MAG 将由内衬抗菌织物的柔性压缩材料制成,尿液通过硅胶尿液收集杯收集,该杯因男性和女性宇航员的不同而不同,以符合人体解剖学。湿度传感器检测到杯中尿液的存在,便会触发通过真空泵的尿液收集。 FO-RO 过滤系统的目标是至少回收 75% 的水,同时消耗不到 10% 的 EMU 能源。为了满足健康标准,滤液保持低盐含量(< 250 ppm NaCl)并有效去除尿液中的主要溶质(尿素、尿酸、氨、钙)。