ArciTect™ Cas9-eGFP 核酸酶是一种融合蛋白,由增强型绿色荧光蛋白 (eGFP) 和来自化脓性链球菌的野生型 Cas9 重组蛋白组成;它包含一个 C 端连接的 eGFP 分子。ArciTect™ Cas9-eGFP 核酸酶需要与向导 RNA(例如 ArciTect™ sgRNA(目录号 #200-0013)或由 ArciTect™ tracrRNA(目录号 #76016)和 ArciTect™ crRNA(目录号 #76010)组成的双链)结合,以形成核糖核蛋白 (RNP) 复合物。该 RNP 复合物在基因组中的位点特定位置产生双链断裂。 ArciTect™ Cas9-eGFP 核酸酶还在 N 端含有核定位信号,确保 RNP 复合物转位至细胞核,从而提高基因组编辑的效率。由于 RNP 复合物在转染后完全发挥作用,因此在转位至细胞核后可立即发挥作用。RNP 复合物在 48 小时内降解,为基因组编辑提供了充足的时间,同时减少了 RNP 复合物持续存在可能导致的脱靶效应。使用 RNP 系统还可以避免生成稳定的 Cas9 表达细胞系的繁琐过程,从而节省时间并降低由于可诱导表达系统泄漏而导致脱靶效应的风险。化脓性链球菌 Cas9 使用原间隔区相邻基序 (PAM) 序列 NGG(其中 N 可以是任何核苷酸)。如果靶序列下游没有基因组 PAM 位点,酶就不会裂解。
基因驱动系统可以确保比正常的孟德尔分离更多地将理想性状传递给后代。成簇的规律散布回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因驱动系统已在双翅目昆虫物种中得到证实,包括果蝇和按蚊,但尚未在其他昆虫物种中得到证实。在这里,我们开发了一种单一的 CRISPR/Cas9 介导的基因驱动构建体,用于小菜蛾,一种对十字花科作物具有高度破坏性的鳞翅目害虫。该基因驱动构建体包含一个 Cas9 基因、一个标记基因 (EGFP) 和一个靶向表型标记基因 (Pxyellow) 的 gRNA 序列,并位点特异性地插入到小菜蛾基因组中。这种基于归巢的基因驱动将包含 Cas9 基因、gRNA 和 EGFP 基因及其启动子的片段约 12 kb 复制到目标位点。总体而言,由于同源定向修复 (HDR),基因驱动效率为 6.67% – 12.59%,由于非同源末端连接 (NHEJ),抗性等位基因形成率为 80.93% – 86.77%。此外,与来自雌性亲本的转基因后代相比,来自父本的转基因后代表现出更高的基因驱动效率。这项研究证明了 CRISPR/Cas9 介导的基因驱动构建体在小菜蛾中的可行性,可将所需的性状遗传给后代。这项研究的结果为开发一种有效的 CRISPR/Cas9 介导的基因驱动系统用于害虫防治奠定了基础。
与哺乳动物相比,斑马鱼可以再生其受损的感光体。这种能力取决于MüllerGlia(Mg)的内在可塑性。在这里,我们确定了转基因记者Careg是重生和心脏的标志,也参与了斑马鱼的视网膜恢复。甲基硝基库(MNU)处理后,视网膜变质并包含受损的细胞类型,包括杆,紫外线敏感锥和外丛状层。该表型与Mg子集中的Careg表达诱导有关,直到光感受器突触层的重建为止。单细胞RNA测序(SCRNASEQ)对再生视网膜的分析表明,未成熟的棒群,通过高淡有关蛋白的高表达和纤毛生成基因MEIG1的定义,但光转导基因的表达较低。此外,锥体对视网膜损伤的反应显示了对代谢和视觉感知基因的放松管制。CAREG:EGFP表达和非表达MG之间的比较表明,这两个亚群的特征是不同的分子特征,表明它们对再生程序的异源反应性。核糖体蛋白S6磷酸化的动力学表明,TOR信号逐渐从MG转换为祖细胞。用雷帕霉素抑制TOR可以降低细胞周期活性,但既不影响CAREG:MG中的EGFP表达,也没有阻止恢复视网膜结构。这表明MG重编程和祖细胞增殖可能受不同的机制调节。总而言之,Careg Reporter检测到活化的MG,并在包括视网膜在内的各种斑马器官中提供了竞争能力的细胞的共同标记。
图3:与常规质粒相比,ANJ-DNA是mRNA产生的优越选择。它会导致较高的mRNA产量,如在37°C时测量2小时长的IVT后总我的mRNA产量,而模板量增加,然后是LICL沉淀(a)。我们现成的EGFP ANJ-DNA产生的mRNA具有较高的效力,可从该领域的领导者提供商业mRNA。mRNA的100 ng/孔被转染到HEK293T中(n = 3)。通过在24小时时间点(b)的流式细胞仪测量mRNA效能。
这个研讨会的一个主要目标是为每个学生提供新浸渍的动物,每天下午执行性腺手术,直到他们取得成功。EGFP mRNA用于性腺电穿孔,并获得了荧光胚胎的成功。到此,每天早晨,在性腺手术后,从与特定学生外科医生相关的单个小鼠中分离出卵,并分析荧光。由研讨会结论,所有学生都成功地产生了发光的胚胎。此外,由于大量的女性,外部讲师(Gurumurthy博士和Williams博士)以及供应商(来自BEX Inc.)能够成功执行该技术。显微注射,在整个课程中,两个带有Zygotes的微注射系统可供学生在教师监督下利用作为此技术的介绍。
缩写:Ad5,腺病毒 5 型;Ad35,腺病毒 35 型;AFP,甲胎蛋白;CAR,柯萨奇病毒和腺病毒受体;CEA,癌胚抗原;CTC,循环肿瘤细胞;ctDNA,无细胞肿瘤 DNA;EGFP,增强型绿色荧光蛋白;EMT,上皮-间质转化;EV,细胞外囊泡;FSP1,成纤维细胞特异性蛋白 1;GFP,绿色荧光蛋白;HCC,肝细胞癌;HSV1,人类单纯病毒 1 型;hTERT,人类端粒酶逆转录酶;Id1,DNA 结合抑制剂 1;IL-1β,白细胞介素-1β;miRNA,微小 RNA;PDAC,胰腺导管腺癌;PDT,光动力疗法;PSA,前列腺特异性抗原;PSES,前列腺特异性增强子序列; PSMA,前列腺特异性膜抗原;RFP,红色荧光蛋白;ROS,活性氧;SEAP,分泌性胚胎碱性磷酸酶;TME,肿瘤微环境。
摘要:尽管有多种共价蛋白质修饰,但很少有用于定量细胞中蛋白质生物结合的技术。在这里,我们描述了一种通过与Halotag共价键形成在纤维素蛋白生物偶联中量化的新方法。这种方法利用不自然的氨基酸(UAA)诱变选择性地在蛋白质表面上安装小而生物串管的反应性手柄。我们利用了反电子二极管的快速动力学和高选择性 - 评估四嗪苯丙氨酸(TETF)与紧张的反甲环烯 - 氯酸酯(STCO-CA)(STCO-CA)和跨循环链烯(TETR-caclecten)(TETR-CATRE)的反应(TETF)与TETRECANE(TETRE)(TETER-CARORE(TETRE)。生物缀合后,叶绿素配体暴露于释放酶标记,以通过简单的蛋白质印迹分析直接定量生物缀合。我们证明了该工具的多功能性,以快速,准确地确定不同UAA/氯烷烃对的生物缀合效率以及对不同蛋白质的不同位点(包括EGFP和雌激素相关的受体ERR)的不同位点。■简介
摘要 CRISPR-Cas9 广泛用于小鼠和大鼠的基因靶向。非同源末端连接 (NHEJ) 修复途径在受精卵中占主导地位,可有效诱导插入或缺失 (indel) 突变,从而在靶位点敲除基因,而通过同源定向修复 (HDR) 的基因敲入 (KI) 则难以产生。在本研究中,我们使用双链 DNA (dsDNA) 供体模板与 Cas9 和两个单向导 RNA,一个用于切割目标基因组序列,另一个用于切割 dsDNA 质粒的侧翼基因组区域和一个同源臂,在 G0 幼崽中产生 20-33% 的 KI 效率。 G0 KI 小鼠在一个靶位点携带 NHEJ 依赖的插入/缺失突变,该突变设计在内含子区域,而在另一个外显子位点携带 HDR 依赖的各种供体盒(例如 EGFP 、mCherry 、Cre 和感兴趣的基因)的精确 KI,这些供体盒的长度从 1 到 5 kbp 不等。这些发现表明,这种由 CRISPR-Cas9 系统介导的 NHEJ 和 HDR 组合方法有助于在小鼠和大鼠中高效、精确地 KI 质粒 DNA 盒。
嵌合抗原受体天然杀手(CAR-NK)细胞疗法被认为是治疗血液系统恶性肿瘤的一种有希望的方式,尤其是B细胞恶性肿瘤。在这项研究中,我们使用在专有的可容纳脂质纳米颗粒(LNP)中配制的抗CD19 CAR mRNA开发了“现成”抗CD19 CAR-NK细胞。在体外环境中评估了mRNA-LNP递送到脐带血(UCB)衍生的NK细胞和原代T细胞中的效率,这表明NK细胞中的递送效率较高。进一步的研究表明,内吞机制,大胞吐作用在有效转染NK细胞用LNP中起可能作用。然而,通过该mRNA-LNP平台产生的CAR-NK细胞对CD19 +靶细胞的细胞毒性显着增强,例如EGFP + Raji稳定细胞系和源自源自难治性/复发性B-Cell B-Cell急性急性淋巴细胞性白血病(B-All)患者的原发性恶性B细胞。这些发现强调了mRNA-LNP平台在推进反对B细胞恶性肿瘤的CAR-NK疗法方面的承诺。
在活细胞中基因组基因局的标签为研究基因组空间组织和基因相互作用提供了视觉证据。CRISPR/DCAS9(群集定期间隔短的短倾向重复序列/停用CAS9)通过DCAS9/SGRNA/荧光蛋白复合物与靶基因组基因座中重复序列的结合来标记基因基因。但是,核中存在许多荧光蛋白通常会引起高背景荧光读数。本研究旨在通过重新设计由DCAS9-Suntag-NLS(目标模块)和SCFV-SFGFP-NLS(信号模块)组成的当前CRISPR/DCAS9- SUNTAG标签系统来限制进入核的荧光模块的数量。我们删除了信号模块的核位置序列(NLS),并将EGFP的两个副本插入信号模块中。核的荧光强度与细胞质的荧光强度(N/C比)降低了71%,信号与背景(S/B比)的比率增加了1.6倍。该系统可以稳定地标记随机选择的基因组基因局基因局基因组基因座,少于9个重复序列。