摘要。非小细胞肺癌(NSCLC)患者的大量(40-60%)患者具有表皮生长因子受体(EGFR)突变,这是NSCLC中至关重要的治疗靶标。针对晚期NSCLC患者的治疗策略已发生明显变化,从细胞毒性剂的经验使用到靶向方案。EGFR酪氨酸激酶抑制剂(TKIS)是晚期NSCLC的第一线治疗,据报道是最有效的。尽管长期以来一直将无进展生存率(PFS)和客观反应率用作终点,但要满足这些终点的情况可能不一定会在晚期肺癌患者的总生存期(OS)增加中造成限制。最近,与标准EGFR -TKIS相比,弗拉拉(Flaura)研究了第三代,不可逆的,口服EGFR -TKI,Osimertinib的Osimertinib研究表明,中位OS延长了6.8个月,死亡率降低了20%[Osimimertertinib,38.6,38.6; egfr -tkis,31.8;危险比(HR),0.80; 95%置信区间(CI),0.641-0.997; p = 0.046];这是满足临床和统计学意义的PF的主要终点的补充。osimertinib也被证明会导致中枢神经系统疾病进展的风险统计学上显着降低(HR,
将CRISPR/CAS9系统作为基因编辑工具的功能彻底改变了该领域,这是由于其易于设计和高灵敏度。CRISPR/CAS9系统有效地规避了先前基因编辑工具的局限性,并为基因组编辑的新时代铺平了道路。但是,更多的研究指出了CRISPR/CAS9自身的局限性。该技术的主要缺陷之一是脱靶效应的频率相对较高。为了克服这些障碍,最近已经开发了一种称为Prime Editing(PE)的第四代基因编辑工具。Prime编辑具有三个组成部分:Cas9 nickase,逆转录酶和Prime Editing Guide RNA(Pegrna)。PEGRNA可以进一步分解为间隔序列,支架,底漆结合位点和逆转录(RT)模板。RT模板已经包括可以通过逆转录酶转录的所需序列。这种新合成的DNA取代了原始链,提供了非常精确的编辑,而不是CRISPR/CAS9系统产生的随机插入/删除敲除。为此,我们进行了一系列研究,以比较CRISPR/CAS9系统和主要编辑的编辑效率。由CRISPR/CAS9系统敲除靶基因EGFR,已通过T7E1测定和质粒报告系统验证,这是强烈的绿色荧光信号所证明的。下一代测序已量化了Prime编辑的编辑率以及CRISPR/CAS9的编辑速率。ngs数据显示CRISPR/CAS9系统的高编辑频率,而未检测到Prime编辑的编辑。这种结果的可能原因之一是缺乏高通量实验来优化EGFR基因特异性的PEGRNA成分。
重排的 NSCLC 细胞系,随后评估厄洛替尼的额外疗效。六株 ALK 重排的 NSCLC 细胞系根据基线时 EGFR 表达的高低分为两组(图 4D)。厄洛替尼加速了对几种 ALK-TKI(包括劳拉替尼)的敏感性,并降低了 EGFR 高表达细胞 A925L 和 H2228 的活力,但对低 EGFR 表达细胞(H3122、KTOR1、KTOR1 RE 和 CCL185IG)的活力仅显示出边际影响(图 4E,补充图 5、6)。劳拉替尼和厄洛替尼联合治疗后的组合指数值小于 1.0,表明在 A925L 和 H2228 细胞中具有协同作用(补充图 7)。这些发现表明,基线时 EGFR 高表达可能是 ALK-
简介 癌症的发展和转移很大程度上取决于癌细胞与环境的相互作用,包括巨噬细胞,巨噬细胞大量渗入肿瘤,通常预后不良 (1, 2)。巨噬细胞是一种特殊细胞,它不断巡逻和监控身体,以解决感染和清除垂死细胞。当检测到异常时,例如在伤口愈合期间,巨噬细胞会消灭入侵的微生物,协调免疫系统,促进和解决炎症,并支持细胞增殖和组织重塑 (3)。微环境中的因素驱使巨噬细胞向特殊细胞状态发展,其中两种极端状态被描述为促炎、经典激活的 M1 状态和抗炎、替代激活的 M2 状态 (4)。然而,多项研究表明,巨噬细胞存在于一系列细胞状态和功能中,它们在不同的激活状态之间振荡 (5)。同样在肿瘤中,巨噬细胞的表型也多种多样,它们支持或抑制肿瘤进展。肿瘤相关巨噬细胞 (TAM) 最初试图恢复肿瘤的正常结构,类似于经典的 M1 激活巨噬细胞 (6)。然而,肿瘤细胞分泌和蛋白水解释放某些细胞因子和生长因子,如集落刺激因子-1 (CSF-1) (7) 和白细胞介素-4 (IL-4) (8),会将 TAM 诱导为促肿瘤表型,具有许多与替代激活的 M2 巨噬细胞相同的特征。因此,TAM 可以支持肿瘤生长、转移和免疫逃避,并保护肿瘤细胞免受化疗 (9–11)。TAM 表型是促肿瘤还是抗肿瘤,取决于肿瘤的起源以及肿瘤微环境 (TME) 内的确切信号传导。
在中国非小细胞肺癌(NSCLC)患者中,表皮生长因子受体(EGFR)基因突变的发生率约为50%(1)。在靶向治疗迅速发展的时代,随着EGFR酪氨酸激酶抑制剂(TKI)的广泛应用,晚期NSCLC的预后显著改善。同时,新生或继发性耐药突变的出现也给临床带来了巨大的挑战。据报道,8%的奥希替尼耐药中国NSCLC患者发现了一种新的耐药突变EGFR L718突变(L718Q突变为显性克隆)(2)。研究发现,EGFR L718Q通过稳定其非反应性构象而独立导致奥希替尼耐药(3)。但目前尚无报道如何有效治疗这种罕见突变。
摘要 ◥ 目的:表皮生长因子受体 (EGFR) 酪氨酸激酶抑制剂 (TKI) 是 EGFR 突变非小细胞肺癌 (NSCLC) 的标准一线疗法。尽管通过最佳 EGFR-TKI 治疗(包括第三代 EGFR-TKI 奥希替尼)可获得持续的临床益处,但不可避免地会产生耐药性。目前,奥希替尼进展后尚无可用的针对性治疗选择。在这里,我们使用反映各种临床情况的患者来源的临床前模型评估了新型第四代 EGFR-TKI BI-4732 的临床前疗效。实验设计:使用具有多种 EGFR 突变的患者来源的细胞/类器官/异种移植模型评估 BI-4732 的抗肿瘤活性。在脑转移小鼠模型中评估了 BI-4732 的颅内抗肿瘤活性。
摘要:具有致敏致癌驱动突变的非小细胞肺癌 (NSCLC) 患者已从靶向治疗中获得了临床益处。EGFR 突变组成性激活信号通路,导致促生存和抗凋亡信号。经典的致敏 EGFR 突变,例如外显子 19 缺失和外显子 21 L858R 点突变,对酪氨酸激酶抑制剂 (TKI) 反应良好。另一方面,在 4-12% 的 EGFR 突变 NSCLC 中观察到 EGFR 外显子 20 同框插入,并且对 TKI 靶向治疗具有耐药性。2021 年 5 月,美国联邦药品管理局 (FDA) 加速批准了阿米凡他单抗 (Rybrevant) 用于接受铂类化疗后 EGFR 外显子 20 插入突变的局部晚期或转移性 NSCLC 成人患者。在这里,我们讨论阿米凡他单抗的特性、临床试验结果以及 EGFR 外显子 20 插入突变 NSCLC 患者的治疗。关键词:阿米凡他单抗、表皮生长因子受体、间充质上皮转化因子、MET、非小细胞肺癌、酪氨酸激酶抑制剂
表皮生长因子受体(EGFR)是一种酪氨酸激酶受体,参与正常细胞的稳态调节和上皮恶性肿瘤的致癌作用。随着精准医疗时代的快速发展,一系列针对EGFR的新型疗法正在如火如荼地开展中。四种EGFR单克隆抗体药物(西妥昔单抗、帕尼单抗、尼妥珠单抗和奈昔单抗)已经上市,另有十几种EGFR单克隆抗体正在临床试验中。本文,我们全面综述了新发现的EGFR单克隆抗体的生物学特性和抗肿瘤机制。我们总结了最近完成和正在进行的经典和新型EGFR单克隆抗体的临床试验。更重要的是,我们根据新的标准,重新分类了针对EGFR单克隆抗体的复杂不断发展的肿瘤细胞耐药机制,包括涉及外泌体、非编码RNA和肿瘤微环境的机制。最后,我们分析了EGFR单抗治疗的局限性,并讨论了当前克服EGFR相关药物耐药性的策略。本综述将有助于我们更好地了解EGFR单抗与耐药肿瘤细胞之间的最新斗争,以及开发具有持久疗效的抗肿瘤EGFR单抗的未来方向。
三阴性乳腺癌 (TNBC) 不太可能对激素疗法和抗 HER2 靶向疗法产生反应。TNBC 过度表达 EGFR 并表现出 PI3K/AKT/mTOR 信号通路的组成性激活。我们假设同时阻断 EGFR 和 mTOR 可能是治疗 TNBC 的潜在治疗策略。我们研究了 mTOR 抑制剂依维莫司与 EGFR 酪氨酸激酶抑制剂吉非替尼联合在有或没有 PI3K/AKT/mTOR 信号通路激活突变的 TNBC 细胞中的抗肿瘤活性。我们证明依维莫司和吉非替尼在 PI3K 和 PTEN 突变的 CAL-51 细胞系中诱导协同生长抑制,但在 PTEN 缺陷的 HCC-1937 细胞系中没有诱导协同生长抑制。抗增殖作用与 mTOR 和 P70S6K 磷酸化的协同抑制以及 CAL-51 细胞系中 4E-BP1 活性的显著降低有关。我们还表明,联合疗法显著抑制了该细胞系的细胞周期进程并增加了细胞凋亡。基因和蛋白质表达分析表明,联合治疗后细胞周期调节因子显著下调。总之,这些结果表明,mTOR 和 EGFR 的双重抑制可能是治疗 PI3K 激活突变的 TNBC 的有效方法。
其结构主要由胞外区、跨膜区和胞内酪氨酸激酶结构域三部分组成。EGFR基因全长192kbp,由28个外显子组成,位于7号染色体短臂7p21-14区域。大多数突变发生在18~21外显子,不同类型的突变对EGFR TKI临床疗效的影响不同。外显子19的缺失和外显子21的L858R替换是EGFR最常见的两种突变,且对TKI敏感。EGFR Ex20Ins突变是第三种最典型的EGFR突变类型,已知其与吉非替尼、厄洛替尼等常见TKI耐药有关。目前,EGFR外显子20插入突变类型共122种,位于C螺旋后的Met766-Cys775,少数位于C螺旋后的G1u762-Tyr764。其中20.5%的插入发生在Val769位氨基酸之后,28.7%的插入发生在Asp770位氨基酸之后,17.2%的插入发生在Pro772位氨基酸之后,14%的插入发生在His773位氨基酸之后(5)。最常见的突变类型为Asp770_Asn771ins,其次为Va1769_Asp770ins、Asp770_Asn771ins、A1a767_Va1769、Va1769_Asp770ins和Ser768_Asp770,其插入序列基本相似。 EGFR Ex20Ins 是一个高度异质性的激活突变家族,其分子结构、生物学特性和对 EGFR TKI 的反应存在复杂的差异。对 EGFR 外显子 20 突变进行了分析