Soli 是一种用于 HCI 的新型手势感应技术,具有许多潜在用例。与电容式感应或基于视觉的感应相比,它旨在克服遮挡、照明和嵌入式感应问题。它还旨在支持 3D、距离和微动作,以实现新颖的交互形式。Soli 结合了硬件架构、信号处理、软件抽象、UX 范例和手势识别的视图,适用于嵌入式硬件和最终产品。Soli 技术与硬件无关,这意味着传感技术可以与不同的雷达芯片配合使用。事实上,该团队已经开发了两个完全集成的雷达芯片(图 1)、一个调频连续波 (FMCW) SiGe 芯片和一个直接序列扩频 (DSSS) CMOS 芯片。有四个接收 (Rx) 和两个发射 (Tx) 天线。Rx 天线间距设计用于最佳波束形成,而 Rx/Tx 间距设计用于获得隔离。雷达原型是一款定制的 57-64 GHz 雷达,配有多个窄波束喇叭天线。在 60 GHz 频段,FCC 将带宽限制为 7 GHz(40 至 82 dBm EIRP),这导致分辨率比 Microsoft Kinect 传感器分辨率低约 2cm。如今,Soli 雷达的中心频率为 60 GHz,波长为 5mm,探测范围为 0.05 -15m,视野为 180 度。alpha 开发套件(图 2)使用 FMCW 版本,带有集成开发板,允许通过 USB 与主机连接。
载卫星通信的最新进展提高了动态修改直接辐射阵列(DRA)的辐射模式的能力。这不仅对于传统的通信卫星(例如地球轨道(GEO))至关重要,而且对于低轨道(例如低地球轨道(LEO))的卫星也至关重要。关键设计因素包括光束的数量,梁宽,有效的各向同性辐射功率(EIRP)和每个梁的侧叶水平(SLL)。然而,当试图同时满足上述设计因素的要求时,在多微型方案中出现了一个挑战,这些设计因素反映为不均匀的电源分配。这导致过度饱和,尤其是由于每个光束的激活时间(通常称为激活实例),在中心位置的天线元件中。应对这一挑战,本文提出了一种平衡每个必需光束天线元件激活实例的方法。我们的重点是在位于地球表面500公里的立方体上以19 GHz运行的光束。我们引入了一种基于遗传算法(GA)的算法,以通过调节每个天线元件的重量矩阵的振幅分量来优化光束成型系数。该算法的关键约束是对每个元素激活实例的限制,避免了射频(RF)链中的过度饱和。此外,该算法可满足梁的要求,例如梁宽,SLL,指向方向和总功率。使用先前的关键设计因素,该算法将优化所需的基因,以解决所需的光束特性和约束。我们使用8×8 DRA贴片天线在三个方案中测试了该算法的有效性,该天线具有圆形极化,并在三角形晶格中排列。结果表明,我们的算法不仅符合所需的光束模式规格,而且还确保了整个天线阵列的均匀活化分布。
6.2.2.3 程序 ...................................................................................................................................................... 34 6.2.3 1 000 MHz 以上的测量 ................................................................................................................................ 34 6.2.3.1 识别杂散辐射的重要频率 ............................................................................................................. 35 6.2.3.1.1 试验地点 ............................................................................................................................................. 35 6.2.3.1.2 程序 ............................................................................................................................................. 35 6.2.3.2 测量识别出的杂散辐射的辐射功率电平 ............................................................................................. 35 6.2.3.2.1 试验地点 ............................................................................................................................................. 35 6.2.3.2.2 程序 ............................................................................................................................................. 35 6.2.3.3 测量天线法兰处的传导杂散辐射 ............................................................................................. 36 6.2.3.3.1 试验网站.................................................................................................................................
探索新型传感技术以促进新的交互模式仍然是人机交互领域的一个活跃的研究课题。在众多 HCI 会议中,我们可以看到新交互形式的发展,其基础是采用或改编基于声音、光、电场、无线电波、生物信号等测量的传感技术。在商业上,我们看到雷达传感技术在车辆/汽车和军事环境中得到了广泛的工业发展。在超长距离,雷达技术已在天气和飞机跟踪中使用了数十年。在长距离、中距离和短距离,雷达已用于 ACC、EBA、安全扫描仪、行人检测和盲点检测。雷达通常被认为是一种远程传感技术,它全天候工作,提供 3D 位置信息,无需照明,可以穿透表面和物体,因此可以随时运行。在超短距离,雷达已用于脱粘检测、腐蚀检测和泡沫绝缘缺陷识别。此外,研究界已探索雷达技术用于各种用途,例如存在感知和室内用户跟踪 [5]、生命体征监测 [6] 和情绪识别。在这个范围内,雷达被吹捧为解决隐私、遮挡、照明和视野受限等问题,这些问题是视觉方法所面临的,或者用于传统方法无法解决的医疗条件
