摘要 近几年来,将人工智能 (AI) 应用于可持续发展工程活动的案例层出不穷。生命周期工程 (LCE) 具有整体视角,兼顾经济和环境目标,有潜力系统地达到更高的生产力水平。为了解决目前在更系统地部署具有 LCE 的 AI (AI-LCE) 方面的差距,我们进行了系统的文献综述,重点关注三个方面:(1) 最流行的 AI 技术,(2) 当前 AI 改进的 LCE 子领域和 (3) AI 高度增强的子领域。我们使用一组特定的纳入和排除标准来识别和选择来自多个领域(即生产、物流、营销和供应链)的学术论文,经过本文中描述的选择过程,我们最终得到了 42 篇科学论文。研究和分析表明,有许多 AI-LCE 论文涉及可持续发展目标,主要涉及:工业、创新和基础设施;可持续城市和社区;以及负责任的消费和生产。总体而言,这些论文描绘了 LCE 中使用的各种 AI 技术。生产设计和维护和维修是 LCE 中探索最多的子领域,而物流和采购是探索最少的子领域。AI-LCE 的研究集中在少数几个占主导地位的国家,尤其是研究资金雄厚、专注于工业 4.0 的国家;德国在出版物数量方面脱颖而出。对选定的相关科学论文进行深入分析有助于更正确地了解该领域,从而在未来更系统地研究 AI-LCE。
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
生物医学科学与工程是一项跨学科计划,涉及用于医疗保健目的的生物学和医学的工程原理和设计概念,例如诊断,监测和治疗疾病。我们的BME计划的主要任务是培养具有生物学,医学和工程领域的跨学科专业知识的学生,以训练他们通过分子生物学,生物力学,生物力学,信息学,纳米技术,仪器,仪器和材料工程的知识来进行研究。该计划是跨学科学习,创造性思维,解决问题的技能以及对新兴生物技术及其未来发展的敏锐感的坚实基础。通过该计划的精心设计的研究计划,预计学生将受过良好的教育,以实现生物医学工程领域领导力的最前沿。
摘要。Wasserstein Barycenters以几何有意义的方式定义了概率度量的平均值。它们的使用越来越流行在应用领域,例如图像,几何或语言处理。在这些领域中,人们的概率度量通常无法全部访问,并且从业者可能必须处理统计或计算近似值。在本文中,我们量化了此类近似值对相应的barycenters的影响。我们表明,在相对温和的假设下,Wasserstein Barycenters以一种连续的方式依赖于边缘的方式。我们的证据取决于最近估计,该估计值允许量化Barycenter功能的强凸度。探索了有关瓦瑟尔恒星重中心的统计估计的后果以及正规化的瓦斯汀·巴里中心对其非规范化对应物的收敛。探索了有关瓦瑟尔恒星重中心的统计估计的后果以及正规化的瓦斯汀·巴里中心对其非规范化对应物的收敛。
里德堡原子拥有远离原子阳离子的高度激发价电子。[1,2] 与基态原子相比,它们表现出夸张的特性,例如非常大的电偶极矩,这可以促进与宏观外部场甚至来自附近粒子的微观电磁场的强烈相互作用。这些相互作用可以通过静态电场或磁场、激光或微波场来控制,使里德堡原子系统成为实现可控量子多体模拟器的理想选择。过去几十年来,在中性原子系统方面取得了令人瞩目的实验进展,包括超冷原子气体的制备[3,4]、单原子的高分辨率成像[5,6]、可重构光镊阵列中单个原子的捕获[7-9],高激发里德堡态的迷人特性被令人信服地揭示出来,使其成为最受欢迎的中性原子量子信息处理 (QIP) 平台。大量 QIP 涉及量子计算和量子模拟,旨在解决传统计算机难以解决的复杂问题。为实现量子计算和量子模拟而寻求的物理候选物范围包括
在过去的十年中,在理论上和实验中提出了确认,可以通过旋转纹理(ST-LRT)或由于Spin-Orbit Coupling(Soc-orbit Couplting(Soc-lrrt)(Soc-lrt)(Soc-orbit(Soc-lrtt)),可以在超导/Ferromagnet杂交中产生远距离旋转旋转三个(LRT)超导性。然而,迄今为止,尚无理论或实验研究表明,这两种贡献都可以同时存在于实验系统中。为了解除这些贡献,我们通过研究与MacMillan-Rowell共振相关的上述差异电导异常(CAS),对在连接超导体的铁磁层内发生的超导式准颗粒干扰效应进行了全面研究。在两种类型的外延,v/mgo/fe基于界面旋转式矛盾偶联的两种类型的外延/f/fe基于v/fe/fe的磁场下,已经研究了CAS的偏差依赖性。我们观察到在小的IP和OOP磁场下CA振幅的各向异性,同时仍然受到高铁的影响较弱,并实施微磁模拟,以帮助我们区分ST-LRT和SOC-LRT贡献。我们的发现表明,对电子传输中Fabry-Pérot-type干扰效应的进一步探索可以产生对由自旋轨道耦合和自旋纹理引起的超导体和铁磁体之间杂交的宝贵见解。
机器学习和密码分析可以被视为“姊妹领域”,因为它们具有许多相同的概念和关注点。[...] Valiant 指出,良好的密码学可以[...] 提供难以学习的函数类的示例。
摘要:使用全球数值天气和气候模型来估算近地面风,因为通过潜在的地形(尤其是瑞士等国家)对空气流进行了强烈修改。在本文中,我们使用基于深度学习和高分辨率数字高程模型的统计方法,将每小时近距离近地面风频段从ERA5重新分析(从原来的25公里网格到1.1 km网格)进行空间下降。来自国家气象服务Meteoswiss的运营数值天气预测模型COSMO-1的2016 - 20的1.1 km分辨率风数据集用于训练和验证我们的模型,这是一种具有梯度pe-Nalized pe-Nalized wasserstein损失的生成对抗网络(GAN)。结果是现实的高分辨率历史地图,该图在瑞士上的每小时风扇的栅栏,以及对聚合风速分布的非常好的预测。区域平均图像特异性指标相对于ERA5的预测有明显的改善,在瑞士高原上的位置通常比对高山区域的技能度量更好。缩小的风场表现出高分辨率,物理上合理的地形效应,例如脊加速和庇护所,这些效应在原始ERA5场中无法解决。
两端施加相反自旋极化的有限长度铁磁链是最简单的受挫自旋模型之一。在干净的经典极限中,由于边界条件而插入的畴壁以相等的概率存在于任何一个键上,并且简并度恰好等于键数。如果通过横向场引入量子力学,畴壁将表现为盒子中的粒子,并且更倾向于靠近链的中间而不是两端。因此,真实量子退火器的一个简单特征是这些极限中的哪一个在实践中实现。在这里,我们使用具有反平行边界自旋的铁磁链来测试真实通量量子比特量子退火器,并发现与两个预期相反,由于存在有效随机纵向场,发现的畴壁分布不均匀,尽管在量子比特之间的耦合名义上为零时进行了调整以将这些场归零。我们对畴壁分布函数的形式进行了简单的推导,并展示了我们发现的效应如何用于确定表征退火器的有效随机场(噪声)的强度。以这种方式测量的噪声小于单量子比特调谐过程中看到的噪声,但仍然会定性地影响退火器执行的模拟结果。