图1。主要刺激和行为结果。(a)行为任务中使用的48个对象图像和与事件相关的fMRI运行。图像由六种对象类型的8个示例组成:食品,食品工具,其他工具,自我工具,可操作的物体和动物。示例具有两种广泛的长宽比(深色颜色=较高的纵横比;较浅的颜色=较低的纵横比),并且在对象类型之间具有可变的,匹配的方向。(b)针对对象类型三重态任务的组平均RDM和2D MDS解决方案。(c)组的RDM和2D MDS解决方案,用于对象形状三重态任务。对于(b)an(c)Spearman的三重态任务和模型RDMS之间的ρ相关性。* = p <0.05。(d)用于区分工具与可操作对象的三个任务的平均李克特评分的条图。* = p <0.05。错误条是正常的95%CI
A 马德里纳米科学高级研究中心 (Imdea Nanociencia),马德里 28049,西班牙 B 哈佛大学约翰·保尔森工程与应用科学学院,马萨诸塞州剑桥 02138,美国 CWAGITY BIGIDUTE FOR 波士顿,马萨诸塞州 02115,美国 D 马德里大学公主医院免疫学服务部,公主卫生研究所,马德里 28006,西班牙 E 纽约大学坦登工程学院生物医学工程系。纽约大学格罗斯曼医学院医学系,纽约大学,纽约州纽约 10010,美国 G 国家生物技术中心 Unity De Nabototecnologíada (CNB-CSIC),马德里 28049,西班牙
。CC-BY 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 8 月 17 日发布。;https://doi.org/10.1101/2024.08.15.608188 doi:bioRxiv 预印本
设计和表征 HIV-1 候选疫苗以引发针对多个表位的抗体 Harry B. Gristick 1 、Harald Hartweger 2 、Yoshiaki Nishimura 3 、Edem Gavor 1 、Kaito Nagashima 1 、Nicholas S. Koranda 1 、Priyanthi NP Gnanapragasam 1 、Leesa M. Kakutani 1 、Luisa Segovia 1 、Olivia Donau 3 、Jennifer R. Keeffe 1 、Anthony P. West, Jr. 1 、Malcolm A. Martin 3 、Michel C. Nussenzweig 2,4 、Pamela J. Bjorkman 1,* 1 加州理工学院生物学和生物工程部,美国加利福尼亚州帕萨迪纳市 2 洛克菲勒大学分子免疫学实验室,美国纽约州纽约 10065 3美国马里兰州贝塞斯达市国立卫生研究院国家过敏和感染性疾病研究所分子微生物学系。4 洛克菲勒大学霍华德休斯医学研究所,纽约州纽约市 10065,美国
尽管最近展示了视力模型的进步,但使用自然语言描述图像中复杂关系的能力,但它们对物体大小和距离进行定量研究的能力仍未得到充实。在这项工作中,我们介绍了一个手动注释的基准Q-As-Spatial Batch,其中有271个问题,旨在定量空间原因,并系统地研究了最新的VLMS对此任务的表现。我们的分析表明,对物体之间的差异的推理对SOTA VLM尤其挑战。但是,有些VLM的表现明显优于其他VLM,两个最佳性能模型之间的差距超过40点。我们还令人惊讶地观察到,当使用参考对象的推理路径在响应中自然出现时,表现最佳VLM的成功率会增加19点。受到这一观察的启发,我们开发了一种零射击提示技术,即“空间”,该技术鼓励VLMS使用参考对象作为视觉提示,从而鼓励VLMS进行定量的空间问题。通过指示VLM通过空间启示,Gemini 1.5 Pro,Gemini 1.5 Flash和GPT-4V在其理性路径中使用参考对象,将其成功率提高了40、20和30点,并显着地提高了其成功率。我们强调,可以获得这些重大改进,而无需更多的数据,模型架构修改或微调。1
简介感染和接种全球使用的任何一种主要 COVID-19 疫苗均可诱导针对 SARS-CoV-2 刺突 (S) 蛋白的体液免疫,其中大多数疫苗将 S 编码为单一抗原 (1–3)。抗 S 抗体靶向蛋白质内的多个区域,但主要关注的是中和无细胞病毒体的区域。这些抗体主要结合在受体结合结构域 (RBD) 内,在某些情况下结合在 N 端结构域 (NTD) 内,这两个结构域均位于蛋白质的 S1 结构域中。中和抗体可阻断或阻止 SARS-CoV-2 与进入受体血管紧张素转换酶 2 (ACE-2) 之间的结合,或阻止病毒进入所需的结合后事件 (4, 5)。它们被认为对于减少 SARS-CoV-2 的传播至关重要;因此,它们是预测 COVID-19 疫苗效力的关键指标 (6)。尽管中和抗体的重要性显而易见,但它们也有公认的局限性。中和表位的数量有限,导致 SARS-CoV-2 变体被快速选择,这些变体的突变会削弱抗体与关键中和位点的结合 (7, 8)。在人类群体中进化了大约 3 年后,令人担忧的 SARS-CoV-2 变体已基本摆脱了由祖先 S 抗原诱导的抗体的中和活性,并不断进化以逃避由较新的变体感染诱导的抗体。因此,疫苗在接种后的数月内,其预防感染的效力已经降低。一旦发生感染,SARS-CoV-2 可以直接在细胞间传播,进一步削弱中和抗体的效力 (9)。为了抵消细胞间病毒传播,抗体需要识别受感染细胞表面的病毒抗原,而不是中和无细胞病毒体 (10)。这些抗体会招募效应细胞(如 NK 细胞)来
简介感染和接种全球使用的任何一种主要 COVID-19 疫苗均可诱导针对 SARS-CoV-2 刺突 (S) 蛋白的体液免疫,其中大多数疫苗将 S 编码为单一抗原 (1–3)。抗 S 抗体靶向蛋白质内的多个区域,但主要关注的是中和无细胞病毒体的区域。这些抗体主要结合在受体结合结构域 (RBD) 内,在某些情况下结合在 N 端结构域 (NTD) 内,这两个结构域均位于蛋白质的 S1 结构域中。中和抗体可阻断或阻止 SARS-CoV-2 与进入受体血管紧张素转换酶 2 (ACE-2) 之间的结合,或阻止病毒进入所需的结合后事件 (4, 5)。它们被认为对于减少 SARS-CoV-2 的传播至关重要;因此,它们是预测 COVID-19 疫苗效力的关键指标 (6)。尽管中和抗体的重要性显而易见,但它们也有公认的局限性。中和表位的数量有限,导致 SARS-CoV-2 变体被快速选择,这些变体的突变会削弱抗体与关键中和位点的结合 (7, 8)。在人类群体中进化了大约 3 年后,令人担忧的 SARS-CoV-2 变体已基本摆脱了由祖先 S 抗原诱导的抗体的中和活性,并不断进化以逃避由较新的变体感染诱导的抗体。因此,疫苗在接种后的数月内,其预防感染的效力已经降低。一旦发生感染,SARS-CoV-2 可以直接在细胞间传播,进一步削弱中和抗体的效力 (9)。为了抵消细胞间病毒传播,抗体需要识别受感染细胞表面的病毒抗原,而不是中和无细胞病毒体 (10)。这些抗体会招募效应细胞(如 NK 细胞)来
参考文献1。Allen Je和Al。SCI Transl Med。2013; 5(171):1717; 2。 rb冻结和al。 Pharmacol's。 2021; 100:372-387; 3。 ns疯狂和al。 nat公社。 2019; 10:5221; 4。 Ishizawa J和Al。 癌细胞。 2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2013; 5(171):1717; 2。rb冻结和al。Pharmacol's。2021; 100:372-387; 3。ns疯狂和al。nat公社。2019; 10:5221; 4。 Ishizawa J和Al。 癌细胞。 2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 10:5221; 4。Ishizawa J和Al。癌细胞。2019; 35:721-737 E9; 5。 PR仪式和Al。 ACS头。 2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 35:721-737 E9; 5。PR仪式和Al。ACS头。2019; 14:1020-1029; 6。 chi as和al。 j神经。 2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 14:1020-1029; 6。chi as和al。j神经。2019; 145(1):97-105; 7。 theeler bj和al。 J Clin Oncol.2020; 8。 vv prabhu和al。 歌手res。 2020; 80(16_supplementary):5688-5688; 9。 Wagner J和Al。 循环单元。 2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2019; 145(1):97-105; 7。theeler bj和al。J Clin Oncol.2020; 8。vv prabhu和al。歌手res。2020; 80(16_supplementary):5688-5688; 9。Wagner J和Al。循环单元。2017; 16:1790-1799; 10。 Staley A和Al。 AM J Singing Res。 2021; 11(11):5374-5387; 11。 张Y和Al。 Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。2017; 16:1790-1799; 10。Staley A和Al。AM J Singing Res。2021; 11(11):5374-5387; 11。张Y和Al。Oncol Front。 2020; 10:57141; 12。 Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Oncol Front。2020; 10:57141; 12。Tucker K和Al。 AM J Singing Res。 2022; 12(2):521-536; 13。 vv prabhu和al。 Clins Ress。 2019; 25:2305-2313; 14。 Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Tucker K和Al。AM J Singing Res。2022; 12(2):521-536; 13。vv prabhu和al。Clins Ress。2019; 25:2305-2313; 14。Jassal B和Al。 九十res。 2020 JAN 8; 48(D1):D498-D503。Jassal B和Al。九十res。2020 JAN 8; 48(D1):D498-D503。2020 JAN 8; 48(D1):D498-D503。
疫苗开发策略已经从将整个生物体用作免疫原转变为单个抗原,而进一步转向了表位。由于表位是抗原的相对微小且具有免疫学相关的部分,因此它具有刺激更健壮和特定的免疫反应的潜力,同时导致最小的不良反应。结果,疫苗开发的最新重点是开发可以靶向多种毒力机制的多诊断疫苗。相应地,我们设计了多种作用疫苗候选B(多-B细胞表位免疫原)和CTB-B(辅助 - 霍乱 - 霍乱毒素亚基B(CTB) - 与S. aureus相连。设计的疫苗由八个特征良好的金黄色葡萄球菌毒力因子的B细胞表位段(20-mer)组成,即CLFB,FNBPA,HLA,HLA,ISDA,ISDA,ISDB,ISDB,LUKE,LUKE,SDRD和SDRE连接。使用Freund>的C57BL/6小鼠表示设计的疫苗
6.1 简介 6-1 6.2 背景 6-1 6.3 方法论 6-1 6.3.1 元分析方法 6-2 6.4 实验活动概述 6-3 6.4.1 选择实验平台 6-4 6.5 ELICIT 6-5 6.5.1 ELICIT 概述 6-5 6.5.2 ELICIT 场景 6-5 6.5.3 ELICIT 的 C2 方法实施 6-6 6.6 IMAGE 6-7 6.6.1 IMAGE 概述 6-7 6.6.2 IMAGE 场景 6-8 6.6.3 IMAGE 的 C2 方法实施 6-8 6.7 WISE 6-9 6.7.1 WISE 概述 6-9 6.7.2 WISE 场景 6-9 6.7.3 WISE C2 方法的实施 6-9 6.8 PANOPEA 6-11 6.8.1 PANOPEA 概述 6-11 6.8.2 PANOPEA 场景 6-11 6.8.3 PANOPEA C2 方法实施 6-11 6.9 元分析数据 6-12 6.10 独立变量 6-13 6.11 因变量 6-15 6.12 元分析设计和分析方法 6-17 6.13 实验结果 6-18 6.13.1 H1:NATO C2 成熟度模型中的每一种 C2 方法都位于 C2 方法空间的不同区域中 6.13.2 H2:没有一种 C2 方法总是最合适的 6-22 6.13.3 H3:更多支持网络的 C2 方法更适合更具挑战性的情况;但是,在某些情况下,网络支持的 C2 方法较少的 C2 方法更合适 6.13.4 H4:更多网络支持的 C2 方法更敏捷(拥有更高的 6-27 C2 方法敏捷性) 6.13.5 H5:C2 方法空间的维度与敏捷性呈正相关 6-32 6.13.6 H6:更多网络支持的 C2 方法能够更好地维护