稿件收到于 2022 年 3 月 28 日;修订于 2022 年 5 月 3 日;接受于 2022 年 5 月 12 日。导致这些结果的研究获得了欧盟“地平线 2020”研究和创新计划下玛丽居里资助协议编号 812790(MSCA-ETN PETER)的资助。(通讯作者:Qazi Mashaal Khan。)Qazi Mashaal Khan 就职于 ESEO 工程学院、电气和电子工程系、RF-EMC 研究小组,49107 昂热,法国,同时也就职于法国国立应用科学研究所,35708 雷恩,法国(电子邮件:qazimashaal.khan@eseo.fr)。 Lokesh Devaraj 和 Alastair Ruddle 就职于 HORIBA MIRA Limited,地址:英国纽尼顿,CV10 0TU(电子邮件:lokesh.devaraj@horiba-mira.com;alastair.ruddle@horiba-mira.com)。Mohsen Koohestani、Mohamed Ramdani 和 Richard Perdriau 就职于 ESEO 工程学院电气和电子工程系 RF-EMC 研究组,地址:法国昂热 49107,以及雷恩第一大学雷恩电子和电信研究所,地址:法国雷恩 35042(电子邮件:mohsen.koohestani@eseo.fr;mohamed.ramdani@eseo.fr;richard.perdriau@eseo.fr)。数字对象标识符 10.1109/LEMCPA.20XX.XXXXXX
技术扩展使电子设备可访问并为全球几乎每个人都能负担得起,并且自六十年代以来就已经提高了集成电路(IC)和电子功能。尽管如此,人们众所周知,这种扩展为半导体行业带来了新的(和主要)可靠性挑战[1-4]。国际标准已被提出并用于测试ICS的衰老(例如MIL-STD-883H [5]的第1015.9部分),以及进行的和IRRA和IRRA介绍电磁干扰(EMI)[6-9]。尽管如此,这些标准并未考虑到衰老的可能综合作用可能对IC的免疫水平产生。先前已发表的工作[2]根据直接功率注入(DPI)标准[10],解决了EMI对商业微控制器(本文中的零件编号和制造商)的影响。在[4]中,作者提出了一个EMC可靠性模型,以预测IC的EM发射。该模型考虑了高温,电流和电压应力的组合,考虑了衰老。基于商业FPGA(XI Linx Spartan 6)验证了EM预测模型。在[11]中,作者提出了一种建模方法,旨在预测衰老对加速寿命测试后(由于高温)后的相锁环(PLL)电路的易感水平的影响。根据IEC 62132-3标准[10]定义的直接功率注入(DPI)方法对PLL敏感性进行了表征。其他作者[12,13]发表了一项作品,分析了执行EMI和总离子剂量(TID)
摘要 — 更高的片上电流需求会导致供电网络的功率效率降低,这是由于电流路径内的分布损耗造成的。高压电源架构和封装内稳压器 (VR) 拓扑可以通过减少分布损耗来提高系统功率效率。然而,由于高压注入和与敏感电子设备的距离很近,电磁干扰 (EMI) 可能是一个重大挑战。本文介绍了一种具有分布式拓扑的新型基于变压器的电感、电感、电容 (LLC) 谐振转换器,用于负载点直流-直流转换。与具有相同降压比的单分支 LLC 谐振转换器相比,分布式拓扑的 EMI 降低了 3 倍以上。已经开发出封装内 VR 的原型。实验结果证明其与 EMI 分析具有良好的相关性。由于这种分布式转换器系统的 EMI 较低,因此适合应用于系统级封装、无线设备和物联网。
本文档概述了作为受市场更新计划 (MRP) 影响的应用程序的连接测试阶段的一部分要执行的测试用例。在此测试阶段,主要目标是评估和验证系统的连接组件。综合功能测试阶段将安排在未来某个日期,不属于本次测试的范围。
每台电子设备都需要某种电源,无论是电网、电池还是简单的台式电源。当今汽车和绿色能源等行业的先进电力电子器件面临着电力转换带来的重大挑战,需要低噪音和热管理来确保可靠性和稳定的电力输送,从而确保整个系统的电气性能。除了低噪音、热管理和稳定的电力外,现代电力电子器件还需要在更紧凑的外形尺寸中实现更高的功率因数,这将传统设计推向极限。突出的例子包括汽车电源管理、绿色能源系统和支持 5G 部署的电信设备。
3.1. PCB 设计指南 ...................................................................................................................................................................... 6
B.1 公式(3.5)的证明 ........................135 B.2 公式(3.8)的证明 .......................136 B.3 公式 (3.9) 的证明 ......................137 B.4 公式 (3.11) 的证明 .............。。。。。。。。139
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
摘要 - 计算机视觉是一项快速前进的技术,在很大程度上依赖相机传感器来为机器学习(ML)模型提供决策。已确认在各种未来派应用中发挥关键作用,例如自动驾驶汽车的进步,自动驾驶和目标跟踪无人机,停车援助和避免碰撞系统。但是,随着硬件级传感器黑客攻击的越来越多,即使是相机传感器也容易受到损害。本实验论文提出了使用电磁干扰(EMI)对机器计算机视觉(CV)进行机器学习能力的传感器黑客攻击的想法。开发了中端EMI入侵设备,以破坏计算机视觉系统的准确性和监督功能。评估研究了传感器黑客入侵对依赖实时饲料的障碍识别模型至关重要的摄像头传感器的影响,从而比较了有或没有传感器篡改的决策能力以评估整体效果。我们的结果表明,EMI显着影响相机传感器的性能,降低基于机器学习的对象检测系统的准确性和帧速率。这些发现强调了相机传感器对传感器黑客入侵的脆弱性,并突出了需要改进安全措施以保护计算机视觉系统中此类攻击的必要性。索引术语 - EMI,计算机视觉(CV),ML,自动驾驶车辆,避免碰撞