© 编辑(如适用)和作者,经 Springer Nature Singapore Pte Ltd. 独家许可。2023 本作品受版权保护。所有权利均由出版商独家和独家授权,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着,即使在没有具体声明的情况下,这些名称也不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以放心地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对于已出版地图中的司法管辖权主张和机构隶属关系保持中立。
主要的开角青光眼(POAG)和婴儿芳香青光眼(IAG)分别是成人和婴儿视力丧失的重要贡献者。这两种指示都与小梁网(TM)的纤维化有关,该小梁网(TM)减弱了幽默流出,眼内压(IOP)和视网膜神经节细胞(RGC)死亡。转化生长因子β2(TGFβ2)与POAG和IAG中的间充质转变(EMT)有关。TGFβ2的主要调节剂是Decorin,这是一种蛋白聚糖,其表达在青光眼患者中的表达降低。在这项研究中,我们证明了使用腺相关病毒(AAV)载体AAV-IKV的鼠前腔高度感染,包括睫状体,角膜基质,TM和角膜神经。表达组成性活跃的TGFβ2(AAV-IKV-TGFβ2CS)的AAV-IKV导致小鼠中TM的纤维化,随后IOP和RGC死亡增加了TM的纤维化,对POAG和IAG的病理学特征进行了建模。从AAV-IKV载体(AAV-IKV-DECORIN)中表达了人类装饰蛋白,使AAV-IKV-TGFβ2CS注射的小鼠在AAV-IKV-TGFβ2CS中减弱了纤维化,IOP和RGC死亡,这表明AAV-IKV-DECORIN可能会分别用作POAG和IAG的治疗。最后,非人类灵长类动物中AAV-IKV-GFP载体的腔内注射导致角膜中GFP的表达而没有任何可见的毒性。
b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
A. 具有 MBE 再生长 P-GaN 栅极的常关型 HEMT HEMT 结构的特点是具有 25 nm 厚的 AlGaN 势垒和 20 % 的铝率。首先,通过 PECVD(等离子增强气相沉积)沉积 100 nm 厚的氧化硅 SiO 2 层,作为 AlGaN 栅极蚀刻和选择性 GaN 再生长的掩模。在用 CF 4 RIE 蚀刻 SiO 2 层以确定栅极区域之后,通过 ICPECVD 对 AlGaN 层进行 Cl 2 部分蚀刻,条件如下:RF 功率为 60 W、压力为 5 mTorr 并且 Cl 2 流速为 10 sccm。蚀刻时间为 35 秒,去除了 19 nm 的 AlGaN。然后在 MBE(分子束外延)反应器中重新生长用镁(Mg)掺杂的 50 nm GaN 层,其标称受体浓度为 Na-Nd 为 4 x 10 18 cm -3。