职业治疗教育认证委员会 社区学院创新联盟 美国医务助理协会捐赠基金 美国图书馆协会 美国技术教育协会 美国社区学院协会准会员 佐治亚州商业委员会 CISCO 网络学院 联合健康教育项目认证委员会 CompTIA 职业教育计划成员 TCGS 技术图书馆委员会 电子技术人员协会 G eom a 大学注册和招生官员协会 佐治亚州学生财务援助管理局协会 佐治亚州实用护理考试委员会 佐治亚州护理委员会 佐治亚州工业开发者协会 佐治亚州图书馆协会 佐治亚州汽车运输协会 佐治亚州专业标准委员会 外科技术人员认证联络委员会 微软 IT 学院 微软开发者学术联盟 全国幼儿教育协会 全国职业教育中心 全国护理联盟 全国护理认证委员会 北佐治亚地区图书馆协会
DSR Demand-Side-Response EENS Expected energy not served ED Economic Dispatch EMEA Europe, Middle East, and Africa ENTSO-E European Network of Transmission System Operators EOM Energy only market ERAA European Resource Adequacy Assessment ERCOT Electric Reliability Council of Texas EV Electric vehicle EVA Economic Viability Assessment FBMC Flow-Based Market Coupling HP Heat Pumps IEM Internal Energy Market LOLE Loss of load expectation MAF Mid-Term Adequacy Forecast MCD Monte-Carlo drawings (EU) MS (EU) Member State(s) NGO Non-governmental organisation NPV Net present value NRAA National Resource Adequacy Assessment NTC Net Transfer Capacity OCGT Open Cycle Gas Turbine O&M Operation and maintenance PECD Pan-European Climate Database PJM PJM Interconnection LLC (PJM) PtH Power-to-Heat PV Photovoltaic RAA资源充足性评估RD REDISPATCH RS可靠性标准TSO传输系统运营商Tyndp十年网络开发计划损失负载的VOLL值WACC加权平均资本成本
MAPGA Mid-Atlantic Propane Gas Association MEA Maryland Energy Administration MOU Memoranda of Understanding MPD DC Metropolitan Police Department MWCOG Metropolitan Washington Council of Governments NASEO National Association of State Energy Officials NCP National Contingency Plan NCR National Capital Region NDA Non-Disclosure Agreement NRP National Response Plan OC/EOM Office of Communications/Executive Office of the Mayor ONCRC Office of National Capital Region Coordination PACE财产评估清洁能源PEPCO POTOMAC电力公司PGA丙烷气体协会PHMSA管道和危险材料安全管理部门PJM PJM PJM PJM互连是一个区域传输组织(RTO)PIO公共信息官员PSC DC DC DC DC公共服务委员会RTO RTO RTO REGIANIAL RTO REGIANITY REMIANTION REMIANIAL ENGICAL EMPRACTION EMPLANCE EMPLANCE HOMPALLANT (又称DC水)WMDA华盛顿,医学博士,DE Service Station和Auto Veping Assoc。Webeoc Web紧急操作中心
由于本报告篇幅有限,因此假设读者对将激光器稳定到参考腔体领域有一定的了解。对于不熟悉该领域的人来说,Hamilton 的评论文章 [1] 是一个很好的起点。虽然提高激光器的被动稳定性很有用,但只能将激光线宽减小到一定程度。为了取得进一步进展,需要进行主动稳定。主动稳定的先决条件是鉴频器。可以使用分子吸收或参考腔体。参考腔体有两个优点,首先,谐振梳允许访问光谱中的任何位置。此外,控制信号的信噪比可以几乎无限制地增加,而不会因功率而使谐振变宽。在实现这种类型的激光稳定之前,激光源必须以单一的空间和时间模式运行。还假设有足够带宽的致动器来涵盖激光器的固有噪声。这些致动器既可以作用于激光腔本身(压电安装镜、腔内布鲁斯特板),也可以作用于腔外的光(声光调制器 -AOM、电光调制器 -EOM)。20 世纪 80 年代,出现了许多技术发展,使得构建 1 赫兹激光器成为可能。使用参考腔的主要问题之一是热长度变化。
缩写 8-oxodG 8-氧代-7,8-二氢-2′-脱氧鸟苷 8-oxoGua 8-氧代-7,8-二氢鸟嘌呤 A549 肺泡基底上皮细胞腺癌 AA 花生四烯酸 AhR 芳烃受体 BaP 苯并[a]芘 BEAS-2B 永生化肺上皮细胞 BER 碱基切除修复 CT-DNA 小牛胸腺 DNA CYP 细胞色素 P450 ELISA 酶联免疫吸附试验 EOM 可提取有机物 ETS 环境烟草烟雾 GC/MS 气相色谱/质谱法 HEL 人胚胎肺成纤维细胞 HPLC-MS/MS 高效液相色谱-串联质谱法 IARC 国际癌症研究机构 IsoP 15-F 2t-异前列腺素 IUGR 宫内生长受限 LBW 低出生体重(< 2500 g) LC/GC-MS 液相/气相色谱质谱联用 LPO 脂质过氧化 NER 核苷酸切除修复 NHEJ 非同源末端连接修复 OGG1 8-氧鸟嘌呤 DNA 糖基化酶 PAH 多环芳烃 PBL 外周血淋巴细胞 PGE 2 前列腺素 E2 PM 颗粒物 PTGS 前列腺素内过氧化物合酶 ROS 活性氧 S9 组分 微粒体组分酶 SNP 单核苷酸多态性 UGT UDP-葡萄糖醛酸转移酶 XRCC5 X 射线修复交叉互补 5
感谢以下审稿人的意见和建议:Hashim Abbas Syed、Julian Abril Garcia、Takuya Adachi、Peter Adams、Roar Adland、Stefanos Alexopoulos、Mario Apostolov、Emilie Berger、Börje Berneblad、Pierre-Jean Bordahandy、Mary Brooks , 艾查·谢里夫, 特雷弗·克劳, 洛朗·丹尼尔, 巴德·达尔, 尼尔·戴维森, 伊斯梅尔·科沃斯·德尔加多, 扬·德·波尔,彼得·德·兰根、罗兰多·迪亚兹、托尔斯滕·迪普豪斯、胡安·曼努埃尔·迪亚斯·奥雷哈斯、西蒙·埃格顿、Minsang Eom、马欣·法格福里、弗雷德里克·哈格、马克·亨德森、詹姆斯·胡克汉姆、理查德·马丁·汉弗莱斯、安妮·卡佩尔、埃莱尼·孔图、约翰·曼纳斯-贝尔、李善惠, 苏格拉底·乐浦-布尔吉, 伊格纳西奥·洛佩兹·查韦斯, 多罗塔·洛斯特-西明斯卡,图洛赫·穆尼, 艾伦·墨菲, 莎拉·奥利弗, 萨沙·普里斯特罗姆, 斯特凡·莱斯, 让-保罗·罗德里格, 托比昂·里德伯格, 彼得·桑德, 克莱门斯·沙佩勒, 维韦克·斯里瓦斯塔瓦, 艾米丽·斯陶斯伯尔, 斯泰利奥斯·斯特拉提达基斯, 林恩·谭, 安东内拉·特奥多罗, 马莱·特里维迪, 帕特里克·范霍文,国际航运公会专家 Brandt Wagner 和王腾飞审阅了第二章。
平行运动学操纵器(PKM)的特征是封闭的运动环,由于四肢平行排列,但也是由于四肢中存在运动环。此外,许多PKM都是由通过串行组合运动环构建的四肢构建的。这样的四肢称为混合动力,形成了特定类别的复杂四肢。设计和基于模型的控制需要精确的动态PKM模型,而无需简化模型。动力学建模需要在PKM的标准运动学建模中具有运动关系,在该模型中,仅计算了操纵器的正向和逆运动解(相关输入和输出运动)。这与杂种四肢的PKM更加涉及。在本文中采用模块化建模方法,分别处理四肢,并且动作的单个动态方程(EOM)随后将其组装到整体模型中。运动模型的关键是四肢内单个循环的约束分辨率。此局部约束分辨率是一般约束嵌入技术的特殊情况。提出的方法最终允许对一般PKM进行系统的建模。该方法用于IRSBOT-2,其中每个肢体包含两个独立的回路。©2022作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
** CMG 比率和 CI 是使用 t 分布计算的,其方差由血清型特异性线性模型估算,使用对数转换的天然抗体浓度作为响应,并使用疫苗接种组的单个项。 † 对 13 种共享血清型得出非劣效性的结论是基于 95% CI 的下限,即 IgG 反应率差异(Vaxneuvance - 13 价 PCV)> -10 个百分点或 IgG GMC 比率(Vaxneuvance/13 价 PCV)> 0.5。 ‡ 另外 2 种血清型的优越性结论是基于 95% CI 的下限,即 IgG 反应率差异(Vaxneuvance - 13 价 PCV)>10 个百分点或 IgG GMC 比率(Vaxneuvance/13 价 PCV)>2.0。 n = 随机分组、接种疫苗并参与分析的参与者人数。 CI=置信区间; CMG= 平均几何浓度(µ g/ml); IgG=免疫球蛋白G
我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
基于EOM的审查,源本地化过程必须解决前进和反问题(图1)。1,3,5,6)远期问题是当前来源对头皮电势的期望,可以通过准确的头部模型来解决。1,3,5)脑组织的形状和传导分布强烈影响脑电图信号。因此,应使用个性化的MRI来构建确切的头部模型并实现更精确的源定位。4)反问题是指使用头皮电势测量值估算大脑中电流源的精确位置。1)解决此问题的一种方法是使用有关体积导体和发电机解剖结构的合理假设来设定局限性。已经引入了有关反问题的几个建议。1,2,4,5)尤其是作者描述了源分析模型的方法,例如偶极源定位和分布式源定位。从头皮脑电图记录的偶极子源定位可以通过计算当前偶极子的位置,方向和矩参数来估计位置源。4,7)然而,偶极子源定位需要先验假设大脑中的几个活动区域,假定有限数量的等效偶极子,并且可能会因缺失的偶极子而产生偏见。4,5)脑成像方法的最新发展导致了更复杂的选项,可以从头皮EEG信号中定位大脑来源,目前使用了几种分布式源定位方法。4,5,8)4,5)最受欢迎的分布式源模型是最低规范解决方案的修改算法,例如加权最小规范解决方案,低分辨率电磁断层扫描和局部自回旋平均值。