(EOS、雷达、数字地图等)ESM 套件 EOS(日光和红外摄像机、激光测距仪) HMSD(头盔瞄准显示器) 带 ISAR 模式的 360 度雷达 Link 11 SONICS 系统,结合了吊放声纳和声纳浮标管理 1 或 2 个任务控制台 自我保护套件(弹道保护、箔条和照明弹) IFF 询问器 数字地图生成器 2 枚 Marte 导弹(MK2/S 或 MK2 ER) 2 枚鱼雷(MU90、MK46、Stingray) 混合配置(1x 鱼雷 + 1x 导弹) 枢轴机枪 自动折叠系统(叶片和尾翼)
量子色动力学 (QCD) 相图的探索在很大程度上依赖于在不同束流能量下进行的重离子碰撞实验 [ 1 , 2 ]。这些碰撞跨越不同阶段,演变过程错综复杂,需要一个多阶段的理论框架。该框架已成功描述了大量测量结果。最终强子的集体流为我们了解早期动力学、传输特性和所产生的致密核物质的状态方程 (EoS) 提供了至关重要的见解 [ 3 ]。定向流 (v 1 ) 表示集体侧向运动,对早期演化和状态方程尤其敏感 [ 3 , 4 ]。dv 1 / dy | y = 0 的非单调行为(v 1 ( y ) 在中快速度附近的斜率)已被提出作为强子物质和夸克胶子等离子体 (QGP) 之间一级相变的指示 [ 3 , 5 , 6 ]。这是因为相变引起的 EoS 软化可能导致膨胀过程中定向流的减少,从而导致 dv 1 / dy | y = 0 与束流能量的关系达到最小值 [3]。然而,强调 v 1 ( y ) 对各种动力学方面的敏感性至关重要。人们已经利用各种模型来计算从 AGS 到最高 RHIC 能量的 v 1 ( y ),结果差异很大,但没有一个能有效地描述跨束流能量测量的主要特征 [7,8]。在本文中,我们使用具有参数初始条件的 (3 + 1) 维混合框架解释了介子和重子的 v 1 ( y ),并揭示了它对有限化学势下重子初始停止和致密核物质 EoS 的约束能力 [9]。
探索量子染色体动力学(QCD)相图在很大程度上依赖于在各种束能进行的重离子碰撞实验[1,2]。这些碰撞的复杂演化,跨越各个阶段,需要一个多阶段的理论框架。成功描述了许多测量值。对早期动力学,运输特性以及创建密集的核物质的状态(EOS)方程的最终最终HADRON的集体流量[3]。定向流(V 1),表示集体侧向运动,对早期演变和EOS特别敏感[3,4]。D V 1 / D Y |的非单调行为y = 0(已提出了范围内斑点的V 1(y)的斜率)表示辐射物质和夸克 - 杜伦等离子体(QGP)之间的一阶相变[3,5,6]。这是因为归因于相变的EOS的软化会导致膨胀过程中有向流的减少,因此导致D V 1 / D Y |最小值。 y = 0作为梁能量的函数[3]。但是,要强调V 1(y)对各种动态方面的敏感性至关重要。各种模型已被用于计算从AG到顶部RHIC能量的V 1(Y),从而产生了巨大变化的结果,但是,没有一个e ff offf eff offf of eff of e ff the efff of e ff the efff of eff of eff of eff of eff of the e ff [7,8]。在这项贡献中,我们使用(3 + 1) - 尺寸的混合框架与参数初始条件解释了V 1(y),并揭示其在有限化学电位上的浓密核物质的限制功率[9]。
摘要。精油(EOS)源自植物,表现出多种生物学活性,包括抗病毒药,抗癌和抗菌作用。本综述对其化学成分和生物学特性进行了彻底的检查,这对于药物,医疗和农业应用至关重要。EOS对各种细菌和真菌(包括抗药性菌株)表现出有效的抗菌作用,并表现出对流感,疱疹和HIV的有希望的抗病毒活性。此外,它们显示出作为抗癌剂的潜力,诱导细胞凋亡和抑制细胞增殖。尽管有好处,但诸如低溶解度和稳定性之类的挑战限制了它们的使用。诸如纳米塑料之类的创新策略旨在增强其功效。关键词:生物活性,抗菌剂,精油,抗癌活性。
研究重型离子集合中产生的物质集体扩展的特性提供了一种独特的工具,可以更好地了解QCD的非扰动方面。需要从理论和实验方面输入。流体动力学量预测颗粒产生的各向异性,这是由于系统进化的初始状态下的不对称性。这些各向异性的系统学(能量,系统依赖性)的测量不仅可以验证理论思想,还可以确定未知元素,例如等离子体属性(EOS),主题过程。在这个主题中扩大我们的知识是The SIS的主要目标。实验方法用于提供对颗粒和反颗粒扩展中各向异性研究的见解,而理论方法则用于EOS研究。
研究重离子碰撞中产生的物质集体膨胀的性质为更好地理解 QCD 的非微扰方面提供了一个独特的工具。需要理论和实验两方面的投入。流体动力学计算预测粒子产生中的各向异性,这是系统演化初始状态不对称的结果。对这些各向异性的系统性(能量、系统依赖性)测量不仅可以验证理论想法,还可以确定未知元素,如等离子体特性(EoS)、热化过程。拓宽我们在这方面的知识是本论文的主要目标。实验方法用于深入了解粒子和反粒子膨胀的各向异性,而理论方法用于 EoS 研究。
电池:Form Energy、EnerVenue、ESS、Largo Clean Energy、Ambri、Eos、Lockheed Martin、Urban Electric Power 热能:Antora、Highview、Malta 其他:Energy Vault、Quidnet、Hydrostor
Orano 升级后的美国制造工厂使 NUHOMS 干式储存废核燃料罐产量翻了一番 为期两年的重大投资实现了产出目标,将所有制造转移到美国本土工厂,并提高了质量性能。马里兰州贝塞斯达,2021 年 1 月 15 日 — Orano 最近在其位于北卡罗来纳州克纳斯维尔的旗舰工厂完成了整合和实施流程,在增强其 NUHOMS ® 干式储存废核燃料罐的制造方面取得了重大成果。 2018 年,Orano 做出将所有重型制造业务外包的战略决策,从而导致其在克纳斯维尔建立了新的 TN 制造工厂。在 2019-2020 年期间,Orano 将为美国客户制造的所有 NUHOMS 罐整合到这一单一工厂,同时保持其全球供应链以应对突发资源,并升级了国内生产流程。 “与 2019 年相比,2020 年我们的产量翻了一番,”Orano NPS 美国首席运营官 Jean-Luc Palayer 表示,“同时保持了一支积极性高、表现出色的劳动力队伍,并使流程更加可重复和可靠。这对我们、我们的客户和美国废燃料管理来说都是一个重要的里程碑。” 2020 年,Orano 完成并交付了去年客户合同中的所有干式储存系统,产量是 2019 年的两倍,占该设施产能的三分之二。随着精益生产持续改进和额外的工作班次,该设施有能力再次将 2020 年的产量翻一番。TNF 设施经过专门调整,可制造 Orano 最新、最先进的干式燃料储存系统:NUHOMS EOS™。 EOS(扩展优化存储)系统由一个可定制长度的大直径不锈钢罐、一个内部金属合金“蛋箱”篮子(可容纳多达 37 PWR 或 89 BWR 矩形废燃料组件)和涂层碳钢屏蔽塞组成。在实施该设施的新制造能力的同时,Orano 的 EOS 工程师创建了一种互锁篮子设计,消除了篮子制造过程中的所有焊接。凭借这一创新,EOS 篮子的生产速度比传统产品速度快四倍,显著改善了整体生产线。在此实施期间,团队的质量表现和交付也取得了持续的改进。Orano 的美国客户体验到了我们灵活的国内供应链带来的好处,该供应链满足了他们 2020 年的所有准时承诺。Orano 先进的 EOS 技术已获得 NRC 许可,用于每罐高达 50 kW 的废燃料存储热负荷,这是业内最高的,并且是美国市场上唯一一个装载客户废燃料接近这一水平的高容量系统。这些 EOS 系统功能使反应堆所有者能够将较热的燃料组件和冷却时间较短的燃料从反应堆湿式储存池转移到安全的干式储存池中。这有利于运营中的核设施,因为它简化了储存池的管理,并不断减少湿式储存的高热和短冷却燃料组件库存。