氧化物半导体重新引起了人们对用于单片三维 (3D) 集成的互补金属氧化物半导体 (CMOS) 后端 (BEOL) 兼容器件的兴趣。为了获得高质量的氧化物/半导体界面和体半导体,提高氧化物半导体晶体管的性能至关重要。据报道,原子层沉积 (ALD) 氧化铟 (In 2 O 3 ) 具有优异的性能,例如高驱动电流、高迁移率、陡亚阈值斜率和超薄沟道。在本文中,使用 C – V 和电导方法系统地研究了 ALD In 2 O 3 晶体管的 MOS 栅极堆栈中的界面和体陷阱。从 C – V 测量中的积累电容直接获得了 0.93 nm 的低 EOT,表明高质量的栅极氧化物和氧化物/半导体界面。通过 TCAD 对 C – V 和 G – V 特性的模拟,证实了 In 2 O 3 块体中亚带隙能级的缺陷是造成 GP / ω 与 ω 曲线中电导峰的原因。从 C – V 测量中提取了 1×10 20 /cm 3 的高 n 型掺杂。使用电导方法实现了 3.3×10 20 cm − 3 eV − 1 的高亚带隙态密度 (DOS),这有助于实现高 n 型掺杂和高电子密度。高 n 型掺杂进一步证实了通道厚度缩放的能力,因为电荷中性水平在导带内部深度对齐。
BMP最佳管理实践全县范围内的行动计划CAST CHESAPEAKE评估场景工具CBC Chesapeake委员会CBP CBP CBP CHESAPEAKE CHESAPEAKE计划CIT CONOWNICON实施团队CWIP CONOWINGO CONOWNICTO CONOWNITATION CONOWNITATION CONOWNITATION CONOWNITATION CONOWNITATION CONOWERTIANIT SPAL计划CWP PLAN PLAN计划CWP PATERHED PRAINSHED PRAINSHED PROTICE。 Land-River Segment(s) M Million MDE Maryland Department of the Environment MPA Mid-point Assessment MS4 Municipal Separate Storm Sewer System N Nitrogen NEIEN National Environmental Information Exchange Network NPDES National Pollutant Discharge Elimination System O&M Operation and Maintenance P Phosphorus PA DEP Pennsylvania Department of Environmental Protection PBC Performance-Based Contracting PES Payment for Ecosystem Services PFP Pay for Performance PFS Pay for Success PSC校长员工委员会QAPP质量保证项目计划RFA申请要求提案请求请求提案请求SRF国家循环基金基金Stac STAC Scientific and技术咨询委员会TMDL TMDL TMDL TMDL总计每日总负荷总负载VIMS弗吉尼亚州弗吉尼亚州弗吉尼亚州海洋科学研究所USACE USACE USACE USACE USACE UNAMENT USACE US EPA US EPA US EPA US EPA US EPA US EPA US EPA US EPA US EPA US EPA US EPA US EPA ACTURE ANCORENTER ANCOMENCEL ANCORENTER PLANS PLAN SPAL STAR PLAN/DIV>>
基于MOSFET的集成电路和基于TFT的平板显示器是全球最大的两个微电子产业。前者的总体趋势是将器件尺寸缩小到纳米级;后者的趋势是将产品尺寸增加到几米。薄膜对于器件的性能和可靠性至关重要。除了严格控制几何形状、轮廓和产量外,成功的制造工艺还必须满足三个基本要求:大面积、高产量和低温。等离子体工艺,即等离子体增强化学气相沉积(PECVD)、等离子体蚀刻(PE)/反应离子蚀刻(RIE)和溅射沉积,已被证明能有效满足上述要求。虽然对纳米和千兆级微电子的要求截然不同,但它们可以通过基于基本等离子体物理和化学描述复杂的工艺-材料-器件关系来实现。在本次演讲中,将给出使用PECVD工艺操纵体膜和界面特性以获得优化的器件特性的示例。此外,还将讨论在等离子蚀刻工艺中实现高蚀刻选择性、倾斜边缘轮廓和最小化辐射对晶体管的损伤的原理。此外,还将回顾高结晶温度、用于栅极电介质的非晶亚纳米 EOT 高 k、纳米晶体嵌入非易失性存储器以及通过溅射沉积法制备的新型固态白炽发光器件。创新方法(例如新的基于等离子的室温铜蚀刻工艺)可以解决当前行业以及未来半导体制造中的许多挑战性问题。
AADT 年平均日交通量 ADB 亚洲开发银行 ADG 额外总干事 ADT 平均日交通量 AO&M 资产运营与管理 BH 钻孔 BIQ 基本信息问卷 BIV 桥梁检查车 BMS 桥梁管理系统 Bn 十亿 BOQ 工程量清单 CACPC 内阁任命的咨询采购委员会 CE 总工程师 CEA 中央环境局 CEP 中央高速公路项目 CEB 锡兰电力局 CP 合同包 DAB 争议裁决委员会 DCP 动态锥体穿透 DF 国内资金 DG 总干事 DNP 缺陷通知期 Dwg 图纸 EDCF 经济发展公司基金 EE 执行工程师 EOM&M 高速公路运营、维护和管理 EOT 延长时间 EP 东部省 EPF 雇员公积金 ES 工程服务 ESDD 环境和社会发展部 ESEP 南部高速公路项目延长 ETF 雇员信托基金 Exp 高速公路 FAG 外援赠款 FAL 外援贷款 FARDF 外援相关国内资金 FWD 落锤式弯沉仪GIC 政府信息中心 GIS 地理信息系统 GOSL 斯里兰卡政府 GPS 全球定位系统 HA 水平定线 HDD 公路设计部 HDM – 4 公路开发与管理 - 4
摘要纳米钻阵列与光电探测器的组合可以成为SI平台上大规模制造微型和具有成本效益的折射率传感器的策略。然而,互补的金属 - 氧化物 - 血管导体(CMOS)制造过程尤其是在可用于制造结构的材料上的限制。在这里,我们专注于使用CMOS兼容的过渡金属氮化钛(TIN)来制造纳米孔阵列(NHAS)。我们研究了使用高精度工业工艺制造的锡NHA的光学性质(50 nm,100 nm和150 nm),用于在集成的等离子,等离子折射指标传感器中使用。反射率测量显示出明显的Fano形共振,共振长度在950至1200 nm之间,这可以归因于通过NHA的非凡光学传输(EOT)。使用测量的材料介电常数作为输入,测得的光谱是通过具有很高准确性的模拟来重现的:模拟和测量的共振波长偏离小于10 nm,平均在30°和40°°的发病角度下观察到的平均4 nm偏差为4 nm。我们的实验结果表明,锡层从50到150 nm的厚度增加导致灵敏度从614.5 nm/riU增加到765.4 nm/riU,我们将其归因于具有空间扩展SPPS的孔中的单个LSPR之间的强耦合。我们的结果可用于提高锡NHA在片上等离子折射率传感器中的应用。
过去 60 年,集成电路中晶体管数量的迅猛增长推动了电子技术的进步。因此,现代电子芯片包含数十亿个场效应晶体管 (FET),而最先进的硅 FET 由薄至 7 纳米(相当于 13 个原子层 1 )的结构构成。然而,像硅这样的三维材料在进一步减小厚度时,迁移率会急剧下降。此外,非晶态和粗糙的沟道/氧化物界面(也存在于先进的高 k 技术中,如二氧化铪,HfO 2;k,介电常数)的影响变得越来越有害。因此,仅仅依靠标准硅技术进一步缩小现代电子设备的体积正在慢慢停滞 2 。继续缩小设备体积最有希望的解决方案之一是使用具有原子级厚度的二维 (2D) 沟道 3、4 的 FET,它们本质上提供亚纳米级的沟道厚度。然而,2D 技术缺乏能像二氧化硅 (SiO 2 ) 与硅一样有效的绝缘体。理想情况下,这种绝缘体必须能够扩展到等效氧化物厚度 (EOT;与某种替代绝缘体产生相同电容的 SiO 2 厚度) 的单个纳米以下,并且质量足够高以保持低漏电流。此外,绝缘体应该与通道具有明确的界面,绝缘体缺陷数量少,并且介电稳定性高。Hailin Peng 和同事在《自然电子学》上撰文,表明高迁移率 2D 半导体 Bi 2 O 2 Se 可以共形氧化为原子级薄的天然氧化物亚硒酸铋 (Bi 2 SeO 5 ),随后可用作 FET 5 中的栅极绝缘体。目前,六方氮化硼 (hBN) 被广泛认为是二维电子器件最有前途的绝缘体,因为它是结晶的,并且具有干净的范德华界面 6 。然而,hBN 不太可能满足低漏电要求
电气控制设备 薪级 任务类型 任务说明 E4 CORE 调整控制面板组件(例如联锁装置、操作机构、操作或报警设定点和限值等)E4 CORE 调整热井液位控制系统设定点 E4 CORE 调整电机控制器(例如操作设定点和限值、待机功能等)E4 CORE 调整盐度指示系统设定点 E4 CORE 调整温度监测系统设定点 E4 CORE 分析盐度系统数据 E4 NON-CORE 校准电表 E4 CORE 清洁电弧故障检测器 (AFD) 组件 E4 CORE 清洁电气面板组件和内部(例如报警和指示面板、控制面板、远程控制站等)E4 CORE 清洁电动阀门组件 E4 CORE 清洁静电除尘器 E4 CORE 清洁厨房设备电气组件 E4 CORE 清洁热井液位控制系统组件 E4 CORE 清洁洗衣设备 E4 CORE 清洁照明系统组件 E4 CORE 清洁电机控制器(例如接触器、线路、继电器等)E4 CORE 清洁可编程逻辑控制器 (PLC) E4 CORE 清洁盐度单元和指示面板 E4 CORE 清洁轴速传感、指示和发动机指令电报 (EOT) 组件 E4 CORE 清洁温度监控面板 E4 CORE 收集机械和船体振动数据 E4 CORE 检查电弧故障检测器 (AFD) 组件 E4 CORE 检查控制面板(例如操作机构、面板线路、连接等)E4 CORE 检查电动阀门组件 E4 CORE 检查静电除尘器 E4 CORE 检查厨房设备电气组件 E4 CORE 检查热井液位控制系统 E4 CORE 检查洗衣设备 E4 CORE 检查照明系统组件 E4 CORE 检查电机控制器(例如接触器、接线、继电器等)
在过去的几十年中,互补的金属 - 氧化物 - 氧化 - 氧化核(CMOS)技术一直是现代综合电路发展的推动力。增强栅极静电控制以提高对短通道效应(SCE)的免疫力(尤其是在积极缩放晶体管技术的发展中)的关键策略。这包括开发高等效氧化物厚度(EOT)缩放的高κ /金属门技术,以及超薄体,鳍和堆叠的纳米片通道晶体管;在3 nm技术节点1之外,半导体工业(遵循FIN场效应晶体管技术)目前正在采用堆叠的纳米表晶体管。要进一步扩展长度尺寸并保持良好的驱动电流,至关重要的是抑制SCE。可以使用增加数量的薄堆积通道来实现这一目标。然而,常规半导体晶体管的性能迅速降低到硅的3 nm厚度低于3 nm的厚度,而INGAAS的性能降低了10 nm。二维(2D)半导体是一种替代通道材料,与传统的半导管相比,单层厚度和单层厚度较高,在单层厚度上具有更高的迁移率。但是,2D材料缺乏高品质的大区域CMOS兼容生长技术。也很难在其范德华表面形成介电。此外,这些材料很难浓缩,并且在Schottky金属/半导体触点处引起的高接触分析。特别是原子层氧化物半导体,尤其是无定形im-gallium-Zinc氧化物(Igzo) - 用于平面晶体管(TFTS)中的半导体通道材料(用于平面式式施用应用程序12)。但是,尽管是高批量制造的成熟技术,但氧化物半导体很少被视为用于缩放高性能晶体管的Channel材料。这是由于它们的低电荷载流子迁移率约为10 cm 2 v -1 s –1,并且在质量生产中使用时,它们通常需要多达几十纳米的通道厚度13。然而,对于单一三维(3D)整合应用14-21的CMOS后端(BEOL)中氧化物半导体晶体管的使用引起了兴趣。
(AG 680.1 (0 Nov GL) J JIJ_.MEJUTORJOUS UNIT COMMENDATJON..-由陆军行政长官 d1.reetlon 根据 AU 260-15 授予功绩单位 Cummendatl,rm a 授予以下人员联合王国陆军部队 e:tttptlol:l!ll!J' 的功绩Serdee du.rln 的出色表现:指示的 pericdll。'l'he 引文如下:1.第15tli Qiia,·termater Compan11, 18t aavalr'JI Dlrili ~mlJllll)7以坚定和出色的态度给予了最大程度的密切支持。 凭借其独创性、坚韧不拔的精神,该公司克服了在严寒的冬天运送物资的漫长供应周期所带来的困难。 该公司通过提前预测受援部队的需求,及时将补给品送到适当的地点,满足了受援部队最后变更的要求。 )'"。 该单位以谦逊、忠诚和对职责的忠诚迎接挑战和责任。 在 taco ot mllDf a ffllJII 堪称典范。 第 15 军需官 (Jo,npa,ny, ld Caral'l! Dliria&ll. daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。 这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。 (Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,! 'I Avqmt 1951.)~mlJllll)7以坚定和出色的态度给予了最大程度的密切支持。凭借其独创性、坚韧不拔的精神,该公司克服了在严寒的冬天运送物资的漫长供应周期所带来的困难。该公司通过提前预测受援部队的需求,及时将补给品送到适当的地点,满足了受援部队最后变更的要求。 )'"。该单位以谦逊、忠诚和对职责的忠诚迎接挑战和责任。在 taco ot mllDf a ffllJII 堪称典范。 第 15 军需官 (Jo,npa,ny, ld Caral'l! Dliria&ll. daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。 这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。 (Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,! 'I Avqmt 1951.)ffllJII 堪称典范。第 15 军需官 (Jo,npa,ny, ld Caral'l!Dliria&ll.daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。(Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,!'I Avqmt 1951.)
参考文献 1. Zhou S 等人。Front Immunol。2023;14:1129465。2. Schoenfeld AJ 等人。Cancer Discov。2024;14:1389–402。3. Garon B 等人。N Engl J Med。2015;37:2018–28。缩写 AE,不良事件;BOR,最佳总体缓解;CI,置信区间;CR,完全缓解;CY,环磷酰胺;DCR,疾病控制率;DOR,缓解持续时间;ECOG,东部肿瘤协作组;EGFR,内皮生长因子受体;EOA,评估结束;EOS,研究结束;EOT,治疗结束;FLU,氟达拉滨;GMP,良好生产规范;ICI,免疫检查点抑制剂;IL-2,白细胞介素-2;NE,不可评估; NR,未达到;NSCLC,非小细胞肺癌;ORR,客观缓解率;PD,进展性疾病;PD-L1,程序性细胞死亡-1配体;PR,部分缓解;PS,体能状态;Q3W,每 3 周一次;Q6W,每 6 周一次;RECIST,实体肿瘤疗效评价标准;SD,疾病稳定;SOD,直径总和;TEAE,治疗中出现的不良事件;TIL,肿瘤浸润淋巴细胞;TKI,酪氨酸激酶抑制剂;TPS,肿瘤比例评分;wt,野生型。披露 Benjamin C Creelan:Achilles Therapeutics plc、Aptitude Health、AstraZeneca、Boehringer-Ingelheim、DAVA Oncology、ER Squibb & Sons, LLC、G1 Therapeutics, Inc、Hoffman LaRoche、Iovance Biotherapeutics、Jannsen、Johnson&Johnson、MJH Healthcare Holdings, LLC、OmniHealth Media、Regeneron、VJ HemeOnc;Kai He:AbbVie、Adaptimmune、Amgen、AstraZeneca、BioNTech SE、Bristol Myers Squibb、Genentech/Roche、GSK、Iovance Biotherapeutics、Lyell Immunopharma、Mirati Therapeutics、Obsidian Therapeutics、OncoC4、Perthera; Edward Garon:A2 Bio、AbbVie、ABL-Bio、Arcus、Arrivent、AstraZeneca、Atreca、Black Diamond Therapeutics、BridgeBio、Bristol Myers Squibb、Daiichi-Sankyo、Eli Lilly、EMD Serono、Genentech、Gilead、Hookipa、I-Mab、Iovance Biotherapeutics、iTeos、LianBio、Merck、Merus、Mirati、Novartis、Nuvalent、Pfizer、Prelude、Regeneron、Sanofi、Seagan、Sensei、Sumitomo、Strata、Summit、Synthekine、TILT Biotherapeutics;Jason Chesney:无可披露;Sylvia Lee:Bristol Myers Squibb、Iovance Biotherapeutics、Kite Pharma、Lyell Immunopharma、Seagen; Jorge Nieva:Aadi Biosciences、Affyimmune、ANP Technologies、AstraZeneca、BioAtla、Cansera、Epic Sciences、G1 Therapeutics、Genentech、Indee Bio、Kalivir、Merck、MindMed、Naveris、Sanofi;Adrian Sacher:AdaptImmune、Amgen、AstraZeneca、BridgeBio、Bristol Myers Squibb、CRISPR Therapeutics、Genentech、Genentech-Roche、GSK、HotSpot Therapeutics、Iovance Biotherapeutics、Lilly、Merck、Pfizer、Spectrum;Friedrich Graf Finckenstein:专利、版权费、其他知识产权:Bristol Myers Squibb;就业情况:Iovance Biotherapeutics。股票或股票期权:Iovance Biotherapeutics; Brian Gastman、Jeffrey Chou、Rana Fiaz、Melissa Catlett、Guan Chen:Iovance Biotherapeutics;Adam Schoenfeld:Achilles Therapeutics、Affini-T Therapeutics、安进、阿斯利康、百时美施贵宝、cTRL therapy、Enara Bio、GSK、Harpoon Therapeutics、Heat Biologics、Immunocore、Iovance Biotherapeutics、Johnson&Johnson、KSQ Therapeutics、Legend Biotech、Legend Therapeutics、Lyell Immunopharma、Merck、Obsidian Therapeutics、Oppenheimer and Co、PACT Pharma、Perceptive Advisors、Prelude Therapeutics、Regeneron、Synthekine、Umoja Biopharma。致谢 • 本研究由 Iovance Biotherapeutics, Inc.(美国加利福尼亚州圣卡洛斯)赞助 • 医学写作和编辑支持由 OPEN Health 公司 Peloton Advantage, LLC 提供,并由 Iovance 资助 • 特别感谢 IOV-COM-202 研究患者及其家属