微通道冷却具有出色的传热特性和最佳整合特性。微通道冷却系统通常由许多微米大小的平行通道组成,冷却液通过。这项技术在过去十年中为电子设备的热管理提出了相当大的影响[1]。从近年来微型制动技术的令人难以置信的进步中受益,微通道冷却板可以制造出来,以非常薄且光线底物的微观平行通道。由于这些原因,在高能量物理实验中的粒子探测器的热管理中,微通道冷却已开始考虑[2]。在高能物理实验中,微通道冷却的首次应用是在Na62实验[3]的GigAtracker(GTK)中进行的,其中硅微通道冷却板用于消除60×40 mm 2 GTK模块的电子设备在局部耗散的热量,同时维持40 mm 2 GTK模块,同时在5下进行了0 cy [4] Sensor Dever in Sensor Dever in Sensor Devers [4]。这项技术后来被用于大型强子对撞机美容实验(LHCB)顶点定位器(VELO)升级[6]。也已对爱丽丝内部跟踪系统(ITS)[7,8]的LS2升级进行了广泛的研究。在这项研究中,我们描述了微通道原型的制造过程和压力测试。对爱丽丝的物质预算贡献和高温均匀性的严格要求[9]需要一项深入的研究,而爱丽丝的社区与CERN,Suranaree Technology(SUT),Thai Microelectronics Center(TMEC)(TMEC)和EpletechniquiquefédéraleDeLausanne(Epfl deSanne(Epfl)进行了密切合作。
能源转型”(SWEET)计划,其标题为“通过灵活性和部门耦合实现高效未来能源系统的途径”(PATHFNDR),得到了积极的评价,我们得以与其他三个成功的联盟一起于 5 月启动该联盟。该联盟由苏黎世联邦理工学院主办,由八个研究合作伙伴(苏黎世联邦理工学院、Empa、PSI、ZHAW、HSLU、UNIGE、EPFL 和 TU Delft)和 25 个合作伙伴代表。该项目旨在开发和分析瑞士可再生能源整合的转型途径。该项目将提供可行的途径,提供规划和运营工具,开发试点
1 Istituto Ricerche Solari colarno(IRSOL),通过Patocchi 57 - Prato Pernice,6605,瑞士6605 Locarno-Monti,瑞士:Andrea-battaglia@ethz.chethz.ch.ch.ch.ch.ch.ch 2 5210 Windisch,瑞士3 3粒子物理与天体物理学研究所(IPA),太阳天体物理学集团,瑞士联邦苏黎世联邦技术研究所(ETHZ)(ETHZ),瑞士8039,瑞士4号,瑞士4号,理论上天文学和化妆师学中心,计算机科学研究所(ICS)斯德哥尔摩大学太阳能物理研究所,10691斯德哥尔摩,瑞典6 Wave Engineering实验室,ÉcolePolytechniquefédéraledeLausanne(EPFL),瑞士1015,瑞士洛桑7 Leibniz-institutfürSonnenphysik(Kis)
ligentec为高科技行业的客户(例如量子计算,高级计算,通信,自动驾驶,空间和生物传感器)提供特定应用的光子集成电路(PIC)。ligentec的技术最初是在洛桑联邦技术学院(EPFL)开发的,已获得专利,并与CMO完全兼容。该技术允许比当今最先进的技术生产具有更好性能的图片。另外,可以集成活性组件以在片上启用更多功能。通过将低脂材料(例如玻璃与硅光子学的益处)结合起来,粘合剂解决了当今综合光子学的主要挑战,包括低损失和短生产周期。
1生物学和化学系统研究所 - 生物学信息处理,德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所; 2英国伯明翰大学医学与牙科科学学院代谢与系统研究所,英国伯明翰; 3澳大利亚布里斯班昆士兰州分子生物科学研究所; 4雀巢卫生科学研究所SA,EPFL创新公园,瑞士洛桑; 5德国Eggenstein- Leopoldshafen的Karlsruhe理工学院自动化和应用信息学研究所; 6德国卡尔斯鲁厄的Karlsruhe技术研究所应用物理学研究所; 7伊利诺伊大学伊利诺伊大学乌尔巴纳·坎普恩恩(Urbana-Champaign)物理系; 8德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所纳米技术研究所
1瑞士CMU-RUE米歇尔服务1号药物学院,瑞士CH-1211 Geneva; magdalena.rausch@unige.ch(M.R.); adriano.rutz@unige.ch(A.R.); Pierre-marie.allard@unige.ch(P.-M.A.); jean-luc.wolfender@unige.ch(J.-L.W.)2瑞士西部的药学科学研究所,日内瓦大学,CMU-RUE MICHEL-SERVET 1,CH-1211 GNEVA,瑞士CH-1211,3瑞士的转化研究中心,CH-1211 Geneva,瑞士,瑞士,瑞士4 GE3 GE3基因组平台,GE3 GENOMICS,CH-1211 GENEVE,瑞典,瑞典,瑞典,Genland,瑞典,GENITAN,瑞典,GENITAN,GENITANANAND,SWITITAN,GENITANAND,SWITITAN,GENITALANAND; celine.delucinge@unige.ch(c.d.-v.); mylene.docquier@unige.ch(M.D。) 5遗传学与进化学系,日内瓦大学,CH-1211日内瓦,瑞士6.洛桑大学医院和洛桑大学的内脏手术系和瑞士洛桑1015; olivier.dormond@chuv.ch. 7化学科学与工程研究所,Ecole Polytechniquefédédéraledéralede Lausanne(EPFL),瑞士洛桑1015; paul.dyson@ep ch *通信:patrycja.nowak-sliwinska@unige.ch;电话。 : +41-22-379-33522瑞士西部的药学科学研究所,日内瓦大学,CMU-RUE MICHEL-SERVET 1,CH-1211 GNEVA,瑞士CH-1211,3瑞士的转化研究中心,CH-1211 Geneva,瑞士,瑞士,瑞士4 GE3 GE3基因组平台,GE3 GENOMICS,CH-1211 GENEVE,瑞典,瑞典,瑞典,Genland,瑞典,GENITAN,瑞典,GENITAN,GENITANANAND,SWITITAN,GENITANAND,SWITITAN,GENITALANAND; celine.delucinge@unige.ch(c.d.-v.); mylene.docquier@unige.ch(M.D。)5遗传学与进化学系,日内瓦大学,CH-1211日内瓦,瑞士6.洛桑大学医院和洛桑大学的内脏手术系和瑞士洛桑1015; olivier.dormond@chuv.ch. 7化学科学与工程研究所,Ecole Polytechniquefédédéraledéralede Lausanne(EPFL),瑞士洛桑1015; paul.dyson@ep ch *通信:patrycja.nowak-sliwinska@unige.ch;电话。: +41-22-379-3352
Scott Armstrong(纽约大学) Jaqueline Bloch(巴黎萨克雷大学) 丁健(北京大学) Vojkan Jakšić(麦吉尔大学)和 Claude-Alain Pillet(土伦大学) Karol Kozlowski(里昂高等商学院) Eugenia Malinnikova(斯坦福大学) Phan Thành Nam(慕尼黑大学) Hermann Nicolai(波茨坦马克斯-普罗维登斯理工学院引力物理系) Leonid Parnovski(伦敦大学学院) Daniel Remenik(智利大学) Steve Shkoller(加州大学戴维斯分校) Maryna Viazovska(洛桑联邦理工学院) Michael Walter(波鸿鲁尔大学) Lauren Williams(哈佛大学) 尤建功(南开大学) Maciej Zworski(加州大学伯克利分校)
Claudia Cancellieri 博士是 Empa 连接技术和腐蚀实验室的团队负责人/研究员。2008 年,她在洛桑联邦理工学院 (EPFL) 获得物理学博士学位,专门研究应变下铜氧化物和氧化物薄膜的脉冲激光沉积生长。在日内瓦大学的第一个博士后期间,她专注于复杂氧化物界面的生长和特性。她在同步加速器瑞士光源保罗谢尔研究所继续研究该主题,在那里她广泛使用光谱技术来推导埋藏复杂氧化物界面的电子能带结构。她目前的研究课题包括研究功能材料(包括多层系统)的微观结构、缺陷、应力和电子特性。
瑞士的太空研究主要在苏黎世联邦理工学院 (ETH) 和洛桑联邦理工学院 (EPFL)、伯尔尼大学、日内瓦大学和苏黎世大学、温迪施和卢塞恩理工大学以及达沃斯物理与气象台(隶属于 ETH)进行。大多数太空研究领域都由不同的研究机构涵盖,从太阳和日光层到太阳系探索,再到天体物理学,以及地球观测、空间态势感知、导航卫星系统和太空生命科学等更实用的空间科学领域。瑞士工业在所有太空活动中发挥着基础性和推动性作用,因此 CSR 与瑞士航天工业集团保持着密切联系,该集团代表了活跃在太空领域的大多数瑞士工业。
光子综合电路(图片)对于现代数据中心内的数据传输是必不可少的,并且传统上遍布多个应用程序领域,限于散装光学元件,例如LIDAR和BIOSESENT。薄膜硅锂(LNOI)的最新进展显示了LNOI综合光子电路的主要潜力,这些电路表现出强大效应,从而实现了超快和有效的电流调制,但难以通过干蚀刻来处理。出于这个原因,不可能蚀刻紧密的封闭波导 - 通常在硅或氮化硅中实现的 - 这阻碍了材料向商业铸造厂的过渡。虽然硅或磷化物的发育良好,但在欧洲提供了许多商业铸造厂,提供PDK(工艺设计套件),但尼橙色锂的图片并非如此。使用钻石样碳(DLC)的新型制造过程,EPFL的最新进展克服了这一挑战。dlc在1950年代被发现,是一种具有出色硬度的无定形材料,并且能够沉积在纳米薄膜中。使用DLC作为硬面膜,EPFL表现出可靠的蚀刻,紧密限制和低损失图片的可靠制造,损失低至5 dB/m。这种制造方法可以预示新一代紧密限制的Niobate光子集成电路,尤其是用于在基于相干激光的射程,波束成形,光学通信或新兴经典和量子计算网络中的应用。该项目将该制造过程转变为Luxtelligence SA,并开发具有关键构件的工艺设计套件(PDK),特别是高速低压调节器,旨在成为欧洲第一个商业纯式纯种型铸造厂,并将lithium niobate Niobate Niobate niobate集成的光子循环访问。该项目的重点是关键技术,例如波导蚀刻和电极处理,并演示了PDK库中的基本组件,例如波导和电形相位变速器。
