a 如果商业客户接受风险,并且证明使用替代资格模型(例如 EQM)不可行,则可以使用 PFM 来实现资格。在这种情况下,ESA 不会支持飞行硬件的成本。
季度回顾 • 截至 2024 年 12 月 31 日的季度,摩根大通短期高收益策略 (SMA) 的表现优于其基准(扣除费用),即彭博美国高收益 Ba/B 1-5 年期仅注册发行人上限指数。 • 相对表现的贡献因素包括避开 REITS-办公部门、相对减持无线部门以及在 REITs-其他部门中强劲的证券选择。 • 个股中的主要贡献者包括 Hudson Pacific Properties、iHeartMedia 和 AmeriGas Partners。 • 银行、媒体/娱乐和消费品部门的证券选择拉低了相对表现。 • 主要拉低表现的发行人包括 Paramount Global、EQM Midstream 和 Scotts Miracle-Gro。 展望未来 • 高于平均水平的收益率、稳固的基本面、支持性的市场和低水平的不良债务表明高收益信贷的前景持续稳固。 • 只要违约率保持较低水平,利差就可能保持在近期范围内。 • 虽然美国大选的不确定性已经过去,但新政府即将出台的政策变化以及对经济增长和通胀的潜在影响仍然存在。
摘要:本文提出了一种具有单端特性的 6T 单元,以提高稳定性、降低能耗、降低漏电功率。该单元与规格优良的 10 和 12 晶体管结构进行了比较。然而,上述结构设计为具有最佳参数,尺寸小,晶体管数量最少,从而减小了单元尺寸。在某些参数方面,例如写入噪声容限,该结构与其他结构相比具有最佳优点,甚至高于 12 和 10 晶体管的结构。通过切断要写入为“1”的存储节点的下拉路径来增强写入操作;读取操作无需切断下拉路径即可执行。在 VDD=0.4V 时,与传统的 6T 相比,所提出的结构的静态功率、读取容限、写入容限、读取能量和写入能量分别优越 33%、50%、215%、9% 和 5%。与标准 6T 结构相比,电气质量指标 (EQM) 参数提高了约十倍,表明新结构的价值已经得到体现。对 32nm 技术中 5,000 次读写产量的蒙特卡洛模拟表明,我们的单元产量比典型的 6T 单元高出 2 倍和 3.4 倍。因此,对于需要低能耗和高稳健性的应用,建议的 6T 单元是一个合适的选择。
摘要:本研究使用ERE5重新分析的SST数据集重新网格重新网格,该数据集具有0.25°×0.25◦历史(1940- 2014年)的空间分辨率(纬度×经度)为0.25°×0.25◦(1940- 2014年),并预测(2015-2100)期。SSP5-8.5场景下的SST模拟是通过八个通用循环模型(GCM)的输出进行的。使用历史(1940- 2015年)和Future(2030-2100)时期的经验分位数映射(EQM)开发了偏置校正的数据集,同时评估了CMIP6模型模拟的每月5个月度观察到的CMIP6模型仿真,以观察到几内亚景点的温度的重新分析数据。总体而言,基于SSP5-8.5的CMIP6模型在2030 - 20100年的未来模拟场景表明,对于几内亚墨西哥湾,SST的预计将增加4.61℃,从2030年的31℃增加到2030年的31℃至2100°C,并在2.6°C in the Western Gog(Sahel)。基于Linux的NCVIEW,雪貂和CDO(气候数据运算符)软件包用于执行进一步的数据重新网格,并评估有关数据的统计功能。此外,ArcGI被用于开发输出图,以可视化GCM的历史和未来输出的空间趋势。相关系数(R)用于评估CMIP6模型的性能,分析显示访问0.1,CAMS CSM 0.2,CSM 0.3,CMCC 0.3和MCM 0.4,表明所有模型在捕获SSTS的气候模式方面都表现出色。CMIP6偏置校正的模型模拟表明,在远处,GOG上的SST变暖会高于近期气候情况。这项研究确认,CMIP6预测可用于与气候和水文影响研究有关的多种评估以及在变暖气候下的缓解措施的制定。
图1-1:基于分布的偏置校正方法的示例。8图2-1:使用乘法性分位数映射的偏见和原始访问-CM2校正和原始访问CM2的CCS数据。14图2-2:比较了9个指数的几种方法学变异的性能的热图。16图3-1:VCSN的Tasmin的年度气候,偏置校正CCAM输出,Loyo CV和RAW CCAM输出以及VCSN的偏置。17图3-2:VCSN累积降水的年度气候,偏见校正了访问-CM2 - CCAM输出,Loyo CV和Raw Access-CM2-CCAM输出以及VCSN的偏见。18图3-3:tasmax的VCSN的冬季气候,偏见校正了ec-earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。19图3-4:偏置校正的GFDL-ESM4 - CCAM输出的NZ 12个位置的长期月度平均累积降水量。20图3-5:VCSN的TXX年度气候,偏置校正Ec-Earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。21图3-6:VCSN一天的最高强度降雨的年度气候,偏见校正了EC-EARTH3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。22图3-7:Perkins技能分数比较了湿法长度与VCSN的直方图与VCSN的偏置校正Ec-Earth3-CCAM输出,相应的交叉验证的校正后的输出和原始输出。23图3-8:夏季和冬季的历史和SSP3-7.0实验之间的气候变化信号在这些季节内积累的降水量。3924图3-9:历史和SSP3-7.0实验和CCS的霜冻天数量。25图3-10:偏置校正的访问-CM2输出与历史和SSP3-7.0实验中每日累积降水的相应原始模型输出之间的时间相关性。26图A-1:线性间隔节点,对数间隔节点和Sigmoid间隔节点的分位间距。33图A-2:从分布中绘制的虚拟数据,参考和模拟数据具有相同的平均值和高方差。35图A-3:虚拟数据,参考和模拟数据从平均值和较高方差的分布中绘制。36图A-4:与分组器的乘法降水虚拟数据的每月平均值。37图A-5:在SSP370场景下,访问CM2-CCAM的夏季和冬季气候变化信号。38图A-6:在SSP370方案下,Mahanga站上的气候变化信号,强调了EQM对趋势的通胀影响,而没有明确的趋势保存。